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Abstract

Postfix is a widely used Mail Transfer Agent, transferring hundreds of

millions of mails between senders and recipients every day. Parsing log files

produced by Postfix is much more difficult than it first appears, but it is

possible to achieve a high degree of accuracy in understanding Postfix log

files, and subsequently in reconstructing the actions taken by Postfix when

processing mail delivery attempts. This thesis describes the creation of a

parser for Postfix log files, documenting the architecture developed for this

project and the parser that implements it, the difficulties encountered and

the solutions developed. The parser stores data gleaned from the log files in

an SQL database; future projects or programs could use the gathered data

to optimise current anti-spam measures, to produce statistics showing how

effective those measures are, or to provide a baseline to test new anti-spam

measures against. The Postfix log file parser needs to be very precise and

strict when parsing, yet must allow users to easily adapt or extend it to parse

new log lines, without requiring that the user have an in-depth knowledge

and understanding of the parser’s internal workings. The newly developed

architecture is designed to make the process of parsing new inputs as simple as

possible, enabling users to trivially add new rules (to parse variants of known

inputs) and relatively easily add new actions (to process a previously unknown

category of inputs). The parser implemented for this project is evaluated on

the criteria of efficiency and coverage of Postfix log files, demonstrating that

the conflicting goals of efficiency and accuracy can be balanced, and that one

need not be sacrificed to achieve the other.
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Chapter 1

Introduction

The architecture and implementation described in this thesis were developed

as the foundation of a larger project to improve anti-spam defences, by

analysing the performance of the set of anti-spam techniques currently in

use, optimising the order and membership of the set based on that analysis,

and developing supplemental anti-spam techniques where deficiencies are

identified. Most anti-spam techniques are content-based (e.g. [2, 23, 31]) and

require a mail to be accepted before determining if it is spam, but rejecting

mail during the delivery attempt is preferable: senders of non-spam mail that

is mistakenly rejected will receive an immediate non-delivery notice; resource

usage is reduced on the accepting mail server, allowing more intensive content-

based techniques to be used on the remaining mail that is accepted; users have

less spam mail to wade through. Improving the performance of anti-spam

techniques that are applied when mail is being transferred via Simple Mail

Transfer Protocol (SMTP) is the goal of this project, by providing a platform

for reasoning about the performance of anti-spam techniques.

The approach chosen to measure performance is to analyse the log files

produced by Postfix,1 the Mail Transfer Agent (MTA) used by the School of

Computer Science and Statistics, rather than modifying its source code to

generate statistics: this approach improves the chances of other Postfix users

testing, using, and benefiting from the software developed for this project.

1http://www.postfix.org/ (last checked 2009/04/21). An introduction to Postfix is
provided in §2.3 [p. 22].

13
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The need arose for a parser capable of dealing with the great number and

variety of log lines produced by Postfix: the parser must be designed and

implemented so that adding support for parsing new inputs is a simple task,

because the log lines to be parsed will change over time. This variety in log

lines occurs for several reasons:

� Log lines differ amongst versions of Postfix.

� The mail server administrator can define custom rejection messages.

� Policy servers (see §2.3.2 [p. 26]) may log different messages depending

on the characteristics of the connection.

� Every DNS Blacklist (DNSBL)2 returns a different explanatory message.

Most mail server administrators will have performed some basic processing

of the log files produced by their mail server at one time or another, whether

it was to debug a problem, explain to a user why their mail is being rejected,

or check if new anti-spam techniques are working. The more adventurous

will have generated statistics to show how successful each of their anti-spam

measures has been in the last week, and possibly even generated some graphs

to clearly illustrate these statistics to management or users.3 Very few

will have performed in-depth parsing and analysis of their log files, where

the parsing must correlate each connection or mail’s log lines rather than

processing each log line in isolation. One of the barriers to this kind of

processing is the unstructured nature of Postfix log files, where each log line

was added on an ad hoc basis when a requirement was discovered or new

functionality was added.4 Further complication arises because the set of log

lines is not fixed, and log lines can differ in many ways between servers, even

within the same organisation, where servers may be configured differently or

running different versions of Postfix.

2This thesis is supplied with a glossary (§B) and a list of acronyms (§C).
3This was the first real foray the author, a Systems Administrator for a network of over

2000 computers and over 1800 users, took into processing Postfix log files.
4A history of all changes made to Postfix is distributed with the source code, available

from http://www.postfix.org/ (last checked 2009/02/23).

http://www.postfix.org/
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The only prior published work on the subject of parsing Postfix log files

that the author is aware of is Log Mail Analyser: Architecture and Practical

Utilizations [11], which aims to extract data from Postfix log files, correlate

it, and present it in a form suitable for a systems administrator to search

using the myriad of standard Unix text processing utilities already available;

it is reviewed alongside the other parsers in the State of the Art Review in

chapter 3. It was hoped to reuse an existing parser rather than writing one

from scratch, but the effort required to adapt and improve an existing parser

was judged to be greater than the effort to write a new one, as described in

the State of the Art Review.

Once it was decided that a new parser would be written, an architecture

was required to base the implementation on. Existing architectures are tailored

towards parsing inputs with a fixed grammar or a tightly constrained format,

whereas Postfix log files lack any form of constraint, as outlined earlier. A new

architecture was designed and developed for this parser, with the hope that

it will be useful to others. The resulting architecture is conceptually simple:

provide a few generic functions (actions), each capable of dealing with an

entire category of inputs (e.g. rejecting a mail delivery attempt), accompanied

by a multitude of precise patterns (rules), each of which recognises one

input variant and only that variant (e.g. rejection by a specific DNSBL), and

specifies which action will process the inputs it recognises. This architecture

is ideally suited to parsing inputs that are not fully understood or do not

conform to a fixed grammar: the architecture warns about unrecognised

inputs and other errors, but continues parsing as best it can, allowing the

developer of a new parser to decide which deficiencies are most important

and require immediate attention, rather than being forced to fix the first

error that arises. The architecture is designed to enable the users of a parser

to easily extend it to parse their particular inputs, without requiring much

work or a high level of understanding of the parsing process and the parser’s

internal workings.

This architecture is the basis of Postfix Log Parser (PLP), a program that

parses Postfix log files and places the resulting data into a Structured Query

Language (SQL) database for later analysis. The gathered data can be used
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to optimise current anti-spam defences, to produce statistics showing how

effective each technique in use is, or to provide a baseline to test new anti-spam

measures against. Numerous other uses are possible for such data: improving

server performance by identifying troublesome destinations and reconfiguring

appropriately; identifying regular high volume uses (e.g. customer newsletters)

and restricting those uses to off-peak times or providing a dedicated service

for them; detecting virus outbreaks that propagate via mail; billing customers

on a shared server. Preserving the raw data enables a multitude of uses far

beyond those conceived of by the author.

1.1 Thesis Layout

Chapter 2 provides background information useful in understanding SMTP,

Postfix, and the motivation behind the project.

Chapter 3 reviews the previously published research in this area and other

Postfix log file parsers, discussing why they were deemed unsuitable for the

task, including why they could not be improved or expanded upon.

Chapter 4 describes the parser architecture developed for this project,

beginning with an overview, then describing each of the components of the

architecture in detail. This chapter concentrates on the abstract, theoretical,

implementation-independent aspects of the architecture; discussion of the

practical aspects is deferred until chapter 5.

Chapter 5 documents PLP, the parser based on the architecture described

in chapter 4. The practical difficulties of implementing each of the components

of the architecture are described, accompanied by the many complications

encountered when parsing Postfix log files, and other details of the implemen-

tation.

Chapter 6 evaluates PLP’s efficiency, exploring the various optimisations

implemented in the parser and the effect they have. It also discusses the

coverage achieved by PLP over 93 log files, with separate sections for the

number of log lines correctly recognised, and the number of connections and

mails whose journey through Postfix was correctly reconstructed.

Chapter 7 contains the conclusion of the thesis.
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The bibliography (appendix A) contains references to the resources used

in designing the architecture and writing PLP.

Appendix B provides a glossary of terms used in the thesis.

Appendix C contains a list of acronyms used in the thesis; uncommon

acronyms will have an entry in the glossary too.

Appendix D provides a brief description of each Postfix daemon.

1.2 Previously Published Work

Portions of chapters 1 and 4–6 have previously been published at an in-

ternational conference [3], and later reprinted in a journal [4]. Publica-

tion of the conference paper was supported by Science Foundation Ireland

RFP 05/RF/CMS002.



Chapter 2

Background

This chapter provides background information helpful in understanding the

remainder of this thesis. It begins with a discussion of the motivation

underlying the project, followed by a brief introduction to Simple Mail

Transfer Protocol (SMTP), and finishes with a longer introduction to Postfix,

concentrating on anti-spam restrictions and policy servers.

2.1 Motivation

This work is part of a larger project to optimise a mail server’s Postfix-based

anti-spam restrictions, generate statistics and graphs, and provide a platform

on which new restrictions can be developed and evaluated to determine if

they are beneficial in the fight against spam. The program written for this

project, Postfix Log Parser (PLP), parses Postfix log files and populates

an Structured Query Language (SQL) database with the data gleaned from

those log files, providing a consistent and simple view of the log files that

future tools can utilise. The gathered data can be used to optimise current

anti-spam measures, to provide a baseline to test new anti-spam measures

against, or to produce statistics showing how effective those measures are.

Determining the ten Postfix restrictions that reject the highest number of

delivery attempts is a short example of the analysis possible using data from

the database:

18
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SELECT name, description, restriction_name, hits_total

FROM rules

WHERE action = ’DELIVERY_REJECTED’

ORDER BY hits_total DESC

LIMIT 10;

If the database supports sub-selects (where the results of one query are

used as a parameter in another), percentages can be obtained for the top ten

restrictions using the query in figure 2.1, producing output similar to table 2.1

on the next page.

Figure 2.1: Sample SQL query showing the percentage of delivery attempts
rejected by the top ten restrictions

SELECT restriction_name, hits_total,

(hits_total * 100.0 /

(SELECT SUM(hits_total)

FROM rules

WHERE action = ’DELIVERY_REJECTED’

)

) || ’%’ AS percentage

FROM rules

WHERE action = ’DELIVERY_REJECTED’

ORDER BY hits_total DESC

LIMIT 10;

Another example is determining which restrictions are not effective: the

query in figure 2.2 on the next page shows which restrictions rejected fewer

than 100 delivery attempts in the last log file parsed, and the percentage of

total rejections in that log file that each of those restrictions represents.

The sample database queries yield summary statistics about the efficiency

of anti-spam techniques. Analysis of this kind is much easier to perform when

the data source is a database than when trying to directly analyse log files.
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Table 2.1: Sample output from an SQL query showing the percentage of
delivery attempts rejected by the top ten restrictions

Restriction Number of Percentage of
rejections total rejections

reject unlisted recipient 2338352 44.255%
reject unlisted sender 864180 16.355%
reject rbl client SpamHaus SBL-XBL 620039 11.734%
check policy service greylisting 497247 9.410%
reject non fqdn hostname 374657 7.090%
reject unknown client 187674 3.551%
reject rbl client SpamHaus Zen 152409 2.884%
reject unknown sender domain 62958 1.191%
check recipient access 61359 1.161%
reject rbl client DSBL 30443 0.576%

All percentages in table 2.1 are exclusive, i.e. the first restriction’s number of
rejections does not include the second restriction’s number of rejections.

Figure 2.2: Sample SQL query showing ineffective restrictions

SELECT name, description, restriction_name, hits,

(hits * 100.0 /

(SELECT SUM(hits)

FROM rules

WHERE action = ’DELIVERY_REJECTED’

)

) || ’%’ AS percentage

FROM rules

WHERE action = ’DELIVERY_REJECTED’

AND hits < 100

ORDER BY hits ASC;
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2.2 Simple Mail Transfer Protocol (SMTP)

Simple Mail Transfer Protocol (SMTP) is the protocol used for transferring

mail between the sending and receiving Mail Transfer Agent (MTA). It is

a simple, human readable, plain text protocol, making it quite simple to

test and debug problems with it. A detailed description of SMTP is beyond

the scope of this thesis: the original protocol definition is in Request For

Comments (RFC) 821 [28], later superceded by RFC 2821 [25]. Despite

the simplicity of the protocol, many viruses and spam sending programs

fail to implement it properly, so requiring strict adherence to the protocol

specification is beneficial in protecting against spam and viruses.1 A typical

SMTP conversation resembles the following (the lines starting with a three

digit number are sent by the server, all other lines are sent by the client):

220 smtp.example.com ESMTP

HELO client.example.com

250 smtp.example.com

MAIL FROM: <alice@example.com>

250 2.1.0 Ok

RCPT TO: <bob@example.com>

250 2.1.5 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

Message headers and body sent here.

.

250 2.0.0 Ok: queued as D7AFA38BA

QUIT

221 2.0.0 Bye

1Originally all mail servers adhered to the principle of Be liberal in what you accept,
and conservative in what you send from RFC 760 [27], but unfortunately that principle
was written in a friendlier time. Given the deluge of spam that mail servers are subjected
to daily, a more appropriate maxim could be: Require strict adherence to relevant RFCs;
implement the strongest restrictions you can; relax the restrictions and adherence only when
legitimate mail is impeded. It is neither as friendly nor as catchy, but it more accurately
reflects the current circumstances.
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An example deviation from the protocol:

220 smtp.example.com ESMTP

HELO client.example.com

250 smtp.example.com

MAIL FROM: Alice in Distribution alice@example.com

501 5.1.7 Bad sender address syntax

RCPT TO: Bob in Sales/Marketing bob@example.com

503 5.5.1 Error: need MAIL command

DATA

503 5.5.1 Error: need RCPT command

Message headers and body sent here.

502 5.5.2 Error: command not recognized

This example client is so poorly written that not only does it present

the sender and recipient addresses improperly, it ignores the error messages

returned by the server and carries on regardless. Many spam and virus

sending programs have serious deficiencies; unfortunately, newer programs

tend to be written by competent programmers or send mail using well written

programs (e.g. Postfix or Sendmail on Unix hosts, Microsoft Outlook on

Windows hosts). Traditionally a mail server would have done its best to deal

with deficient clients, with the intention of accepting as much mail sent to its

users as possible, e.g. by accepting sender or recipient addresses that were

not enclosed in <>, or by ignoring the absence of a HELO command.2 Given

the volume of spam sent daily, this liberal approach is no longer viable.

2.3 The Postfix Mail Transfer Agent

Postfix is a MTA with the following design aims (in order of importance):

security, flexibility of configuration, scalability, and high performance. It

features extensive optional anti-spam restrictions, allowing an administrator

2The HELO command is the first command sent by the client in the SMTP conversation;
it is required by the protocol, but its original purpose was to prevent mail loops by detecting
a server trying to deliver mail to itself, so some implementations omitted it.
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to employ those restrictions which they judge suitable for their server’s needs,

rather than a fixed set chosen by Postfix’s author. These restrictions can

be selectively applied, combined, and bypassed on a per-client, per-recipient,

or per-sender basis, allowing different levels of stricture and permissiveness.

Administrators can supply their own rejection messages to make it clear to

senders why their mail was rejected. Policy servers (soon to be described in

§2.3.2 [p. 26]) provide a simple way to write new restrictions without having

to modify Postfix’s source code. Unfortunately this flexibility has a cost: the

complexity of Postfix’s log files. Although it is usually relatively simple to use

standard Unix text processing utilities to determine the fate of an individual

mail, sometimes it can be quite difficult. For most mails the journey through

Postfix is simple and brief, but the remainder can be quite complex (see §5.7

[p. 107] for details).

Postfix’s design follows the Unix philosophy of “Write programs that do

one thing and do it well” [30], and it is separated into multiple components

that each perform one of the tasks required of an MTA, e.g. receive mail,

send mail, deliver mail to a user’s mailbox; full details can be found in [16].

Postfix’s design is strongly influenced by security concerns: those components

that interact with other hosts are not privileged,3 so bugs in those components

will not give an attacker extra privileges; those components that are privileged

do not interact with other hosts, making it much more difficult for an attacker

to exploit any bugs that may exist in those components.

2.3.1 Mixing and Matching Postfix Restrictions

Postfix restrictions are documented fully in [19,20,21]; the following is only a

brief introduction.

Postfix uses one restriction list (containing zero or more restrictions) for

each stage of the SMTP conversation: client connection, HELO command,

MAIL FROM command, RCPT TO commands, DATA command, and end of

data. The appropriate restriction list is evaluated for each stage, though by

3Privilege means the power to perform actions that are limited to the administrator,
and are not available to ordinary users.
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default the restriction lists for client connection, HELO, and MAIL FROM

commands will not be evaluated until the first RCPT TO command is received,

because some clients do not deal properly with rejections before this stage; a

benefit of this delay is that Postfix has more information available when logging

rejections. Each restriction is evaluated to produce a result of reject, permit,

dunno, or the name of another restriction to be evaluated; other less commonly

used results are possible as described in [5]. The meaning of permit and

reject is obvious; dunno means to stop evaluating the current restriction and

continue processing the remainder of the restriction list, allowing exceptions

to more general rules. The administrator can define new restrictions as a list

of existing restrictions, allowing arbitrarily long and complex user-defined

sequences of lookups, restrictions, and exceptions.

Postfix uses simple lookup tables to make decisions when evaluating some

restrictions, e.g.

check client access cidr:/etc/postfix/client access

check client access The name of the restriction to evaluate.

cidr The type of the lookup table.

/etc/postfix/client access The file containing the lookup table.

The restriction check client access checks if the IP address of the

connected client is found in the specified table and returns the associated

result if found; the method of searching the file is dependant on the type of

the lookup table [18]. Other restrictions determine their result by consulting

external sources, e.g.

reject rbl client dnsbl.example.com

checks the DNS Blacklist (DNSBL) dnsbl.example.com and rejects the

command if the client’s IP address is listed.

The configuration example below shows how to require that all machines

on the local network except for the web server authenticate before send-

ing mail; the web server is exempt because the legacy applications run-

ning on it lack authentication support. The restriction list is evaluated

from top to bottom: permit sasl authenticated permits authenticated
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clients; an exception is made for the web server in the check client access

check, and then other local machines are rejected, because to continue past

permit sasl authenticated the client must not have authenticated.

main.cf:

smtpd_client_restrictions =

<other restrictions>

permit_sasl_authenticated,

check_client_access /etc/postfix/allow_webserver.cidr,

<other restrictions>

/etc/postfix/allow_webserver.cidr:

192.0.2.80/32 dunno

192.0.2.0/24 reject "Please authenticate to send mail"

That example also shows how to supply a custom rejection message. When

the result of a lookup is the name of another restriction Postfix will evaluate

that restriction; this allows restrictions to be chosen based on the client

IP address, client hostname, HELO hostname, sender address, or recipient

address. For example, the administrator may require that all clients on the

local network have valid DNS entries, to prevent people sending mail from

unknown machines; one example of how to achieve this is:

main.cf:

smtpd_client_restrictions =

<other restrictions>

check_client_access /etc/postfix/require_dns_entries.cidr,

<other restrictions>

/etc/postfix/require_dns_entries.cidr:

192.0.2.0/24 reject_unknown_client_hostname

Postfix tries to protect the administrator from misconfiguration in as far

as it reasonably can, e.g. the restriction check helo mx access cannot cause
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a mail to be accepted, because the parameter it checks (the hostname given

in the HELO command) is under the control of the remote client. Despite

this, it is possible for the administrator to make catastrophic mistakes, e.g.

rejecting all mail — the administrator must be cognisant of the effects their

configuration changes will have. This is similar to one of UNIX’s design

philosophies: “UNIX was not designed to stop its users from doing stupid

things, as that would also stop them from doing clever things” [30].

2.3.2 Policy Servers

A policy server [20] is an external program consulted by Postfix to determine

the fate of an SMTP command. The policy server is given state information

by Postfix (sample state information is shown in table 2.2 on the following

page) and returns a result (reject, permit, dunno, or a restriction name) as

described in §2.3.1 [p. 23]. A policy server can perform more complex checks

than those provided by Postfix, such as allowing addresses associated with

the payroll system to send mail on the third Tuesday after pay day only,

to help prevent problems from phishing mails using faked sender addresses.

For example, a phishing mail might pretend that the payroll system had a

disastrous disk failure, and until the server is replaced all salary payments will

have to be processed manually, so please reply to this mail with your name,

address, and bank account details; the criminal can then use any details sent

to him to help with identity theft.

Some widely deployed policy servers:

� Checking if the client satisfies a domain’s Sender Policy Framework

(SPF) records, http://www.openspf.org/ (last checked 2009/04/21).

SPF records specify which mail servers are allowed to send mail using

sender addresses from a particular domain. The intention is to reduce

spam from faked sender addresses, backscatter, and joe jobs. There

has been considerable resistance to SPF because it breaks or vastly

complicates some commonly-used features of SMTP, e.g. forwarding

mail from one domain to another when a user moves.

http://www.openspf.org/
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Table 2.2: Example attributes sent to policy servers, taken from [20]

Attribute name Attribute value

request smtpd access policy
protocol state RCPT
protocol name SMTP
helo name some.domain.tld
queue id 8045F2AB23
sender foo@bar.tld
recipient bar@foo.tld
recipient count 0
client address 1.2.3.4
client name another.domain.tld
reverse client name another.domain.tld
instance 123.456.7

� Greylisting, http://www.greylisting.org/ (last checked 2009/04/21),

is a technique that temporarily rejects a delivery attempt when the

tuple of

(sender address, recipient address, remote IP address)

has not been seen before; on second and subsequent delivery attempts

from that tuple the mail will be accepted. This blocks spam from some

senders because maintaining a list of failed addresses and retrying after

a temporary failure is uneconomical for a spam sender, but a legitimate

mail server must retry deliveries that fail temporarily. Sadly spam

senders are using increasingly complex and well written programs to

distribute spam, frequently using an ISP provided SMTP server from

a compromised machine on the ISP’s network. Greylisting will slowly

become less effective as spam senders adapt, but it does block a large

percentage of spam mail at the moment; the most effective restrictions

from the 93 log files used when generating the results in §6 [p. 129]

are shown in table 2.1 [p. 20]. That table shows that greylisting is

worth using at the moment, particularly when you take into account

its position as the final restriction that a mail must overcome in the

http://www.greylisting.org/
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configuration used on the mail server that generated the log files: on that

server greylisting only takes effect for mails that have passed all other

restrictions. Some problems may be encountered when using greylisting:

some servers fail to retry after a temporary failure, or legitimate mail

may be delayed, particularly when coming from a pool of servers.

� Scoring systems such as postfwd, http://postfwd.org/ (last checked

2009/04/21), perform tests on features of the delivery attempt (e.g. IP

address, sender address), incrementing or decrementing a score based

on the results; if the final score is higher than a threshold the delivery

attempt is rejected. The administrator must manually whitelist clients

if they are to bypass a Postfix restriction, whereas using a threshold

that requires a delivery attempt to hit several scored restrictions will

allow delivery attempt that would be rejected by a boolean restriction.

2.4 Summary

This chapter has provided background information useful in understanding

this thesis, starting with the motivation behind the project, continuing with an

introduction to SMTP, and finishing with Postfix, its anti-spam restrictions,

and its support for policy servers.

http://postfwd.org/


Chapter 3

State of the Art Review

Ten Postfix log file parsers were tested at the start of this project, with

the hope of finding a suitable parser to build upon, rather than writing

one from scratch. It was quite difficult to find ten parsers to review, and

the functionality offered by those parsers ranges from quite basic to more

developed, depending on the needs of the parser’s author.

It was hoped to reuse an existing parser rather than writing one from

scratch, but the existing parsers considered were rejected for one or more

reasons. The effort required to adapt and improve an existing parser was

judged to be greater than the effort to write a new one, because the techniques

used by the existing parsers severely limited their potential: some ignored

the majority of log lines, parsing specific log lines accurately, but without

any provision for parsing new or similar log lines; others sloppily parsed

the majority of log lines, but were incapable of distinguishing between log

lines within one category, e.g. not distinguishing between different anti-

spam techniques causing delivery attempts to be rejected. The first parser

reviewed [11] is the only previously published research in this area that the

author could find; that research aims to show that providing the data from

log files in a more accessible form is helpful to systems administrators.

The ten parsers have been compared and contrasted with Postfix Log

Parser (PLP), this project’s parser, to show how much effort would have

been required to use one of those parsers to fulfil the aims and requirements

29
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of this project. It is important to compare and contrast newly developed

algorithms and parsers against those already available, to accurately judge

what improvements, if any, are delivered by the newcomers. Table 3.1 [p. 52]

summarises the results of this review.

Some important differences exist between PLP and most or all of the

parsers reviewed in this chapter:

1. None of the reviewed parsers perform the kind of advanced parsing

required for this project, or deal with the complications described in

§5.7 [p. 107]. Some correlate log lines by queueid, but none correlate

log lines by Process Identifier (pid) (§5.7.1 [p. 109]).

2. Only PLP enables parsing of new log lines without extensive and

intrusive modifications to the parser; the architecture enabling this is

documented in §4 [p. 53].

3. The reviewed parsers all produce a report of varying complexity and

detail, whereas PLP does not: it extracts data and leaves generation of

reports to other programs. Using a Structured Query Language (SQL)

database simplifies the process of generating such reports (discussed in

§5.3.1 [p. 77]); some sample queries are given in §2.1 [p. 18]. The parser

developed for this project is designed to enable much more detailed

log file analysis than other parsers by providing a stable platform for

subsequent programs to build upon.

4. Most of the reviewed parsers silently ignore log lines they cannot handle,

whereas PLP warns about every single log line it fails to recognise. The

exception is AWStats, which outputs the percentage of log lines it was

unable to parse, but does not output the log lines themselves.

5. A minor difference is that most parsers do not handle compressed log

files; both PLP and Splunk handle them transparently, without user

intervention; Sawmill and Lire can be configured to support compressed

log files, but Sawmill exhibits a dramatic increase in parsing time

when doing so. Support for reading compressed log files is quite helpful,
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because it dramatically reduces the disk space required to store historical

log files.

6. Most of the reviewed parsers do not distinguish between different delivery

attempt rejections, so they cannot be used to determine the success

rate of different anti-spam techniques. The exception is Pflogsumm,

which provides a summary of why delivery attempts were rejected.

Each of the reviewed parsers was tested with the three months (93 days)

of contiguous log files described in §6.1 [p. 130].

The data extracted by PLP is documented in §5.3.3 [p. 82] and §5.3.4

[p. 83], but for convenience the list is repeated here: client and server IP

address and hostname, HELO hostname, queueid, start time, end time, Simple

Mail Transfer Protocol (SMTP) code, enhanced status code, sender, recipient,

size, message-id, delay, and delays. Note: PLP correlates log lines by both

queueid and pid (§5.7.1 [p. 109]), and it stores each mail’s queueid, but it

does not store each connection’s pid, because a use has not been identified

for that data.

3.1 Log Mail Analyser

There appears to be only one prior published paper about parsing Postfix log

files: Log Mail Analyzer: Architecture and Practical Utilizations [11]. The

aim of Log Mail Analyzer (LMA) is quite different from PLP: it attempts

to present correlated data from log files in a form suitable for a systems

administrator to search using the myriad of standard Unix text processing

utilities already available. It produces a Comma-Separated Value (CSV) file

and either a MySQL or Berkeley DB database. Hardly any documentation is

provided with LMA, but some documentation is available in [11]. Studying

the source code is informative, though this author had some difficulty because

the authors of LMA wrote in Italian.

CSV CSV is a very simple format where each record is stored in a single

line, with fields separated by a comma or other punctuation symbol.



CHAPTER 3. STATE OF THE ART REVIEW 32

Problems with CSV include the need to escape separators in the data

stored, providing multiple values for a field (e.g. multiple recipients),

and adding new fields. CSV does not have a standard mechanism to

document the fields or the separator, unlike SQL where every database

includes a schema naming the fields and the type of data they store

(e.g. integer, text, timestamp). The CSV record format used by LMA

is not documented in [11], but the output file contains a comment in

Italian giving the format:

# Timestamp|Nome Client|IP Client|IP Server|From|To

|Status|Size

LMA treats CSV lines starting with # as comments, but not all CSV

parsers will.

Berkeley DB Berkeley DB only supports storing simple (key, value) pairs,

unlike SQL databases that store arbitrary tuples. In LMA’s main

table the key is an integer referred to by secondary tables, and the

value is a CSV line containing all of the data for that row. The

secondary by-sender, by-recipient, by-date, and by-IP tables use the

sender/recipient/date/IP address as the key, and the value is a CSV

list of integers referring to the keys in the main table. This effectively

re-implements SQL foreign keys, but without the functionality offered

by even the most basic of SQL databases, e.g. joins, ordering, searches.

It also requires custom code to search on a combination of attributes,

and the authors of LMA did provide some simple reports: IP-STORY,

FROM-STORY, DAILY-EMAIL, and DAILY-REJECT (all described

later). Berkeley DB appears to be the least useful of the three output for-

mats: it does not provide the functionality of a basic SQL database, and

unlike CSV files it cannot be used with standard Unix text processing

tools.

MySQL MySQL is a widely used, open source, relational database. LMA’s

MySQL support was not tested because the database schema used by

LMA is not documented, so the required database could not be created.
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Whether a MySQL or Berkeley DB database is chosen in addition to

the CSV output, LMA stores the following data: time and date of the log

line, client hostname and IP address, server IP address, sender and recipient

addresses, SMTP code, and size (for accepted mails only). Unlike PLP it

does not store the server hostname, HELO hostname, queueid, start and end

times, timestamps for each log line, enhanced status code, delivery delays, or

message-id (for accepted mails only). Handling of multiple recipients, SMTP

codes, or remote servers1 is not explained; experimental observation shows

that multiple records were added when a mail had multiple recipients, but

the records are not associated or linked in any way, and presumably the same

approach was taken when there were multiple destination servers.

LMA requires major changes to the parser code to parse new log lines or

to extract additional data. The code is structured as a long series of blocks

that each handle all log lines matching a single Regular Expression (regex),

so parsing new log lines requires modifying an existing regex or carefully

inserting a new block in the correct place; extracting extra data would require

modifying multiple blocks, regexes, or both. Regular Expressions are a

compact, powerful method of specifying patterns that describe a set of strings.

The regex aa*b*b describes a set of strings, all of which start with a, followed

by any number of a, then any number of b, and finish with b; the strings

ab, aaaaaaaab, and aaabbbbb are members of that set, whereas the strings

abba, abcd, and qwerty are not. A string can be checked against a regex to

determine if the string is a member of the set of strings described by that

regex.

LMA does not deal with any of the complications discussed in §5.7 [p. 107],

except for correlating log lines by queueid; it cannot correlate most rejected

delivery attempts because it does not correlate log lines by pid. It does not

differentiate between different types of rejections, so it is not suitable for

the purposes of this project; the data about which restriction caused the

rejection is discarded, whereas the main goal of this project is to retain that

information to aid optimisation and evaluation of anti-spam techniques. LMA

1A single mail may be sent to multiple remote servers if it was addressed to recipients
in different domains, or Postfix needs to try multiple servers for one or more recipients.
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fails to parse Postfix log files generated on Solaris hosts because the fields

automatically prepended to each log line differ from those prepended on Linux

hosts; log files from Solaris hosts (and possibly other operating systems) thus

require pre-processing before parsing by LMA. The 93 pre-processed test

log files were parsed without complaint by LMA, although it produced 32

entries in the output CSV file for every rejection in the input log files; it also

missed some 40% of delivered mail. Once these deficiencies were discovered

the author did not spend any more time checking the results.

LMA does provide some simple reports: IP-STORY, FROM-STORY,

DAILY-EMAIL and DAILY-REJECT. These reports search the Berkeley

DB files for matching records: the first three produce CSV lines for the

specified client IP address, sender address, or date respectively. DAILY-

REJECT initially failed with an error message from the Perl interpreter;2

after correcting the errors in the code it worked, producing CSV lines for the

specified day where the SMTP code signifies a rejection. All of these reports

are extremely simple to produce from the CSV file using the standard Unix

tool awk; the most complicated, DAILY-REJECT, is merely:

awk -F\| ’BEGIN { previous = "" };

$1 ~ /2007-01-26/ && $7 != "250" && $0 != previous

{ print $0; print " "; previous = $0; }’ lma_output.txt

Notes about the command above:

� It outputs a line containing only a single space after each matching

record, to accurately replicate the output of DAILY-REJECT.

� DAILY-REJECT considers all SMTP codes except “250” to be rejec-

tions; this includes invalid SMTP codes such as 0 and deferred, so

the awk command does too. These invalid SMTP codes are most likely

present because of incorrect parsing by LMA.

2The error messages were:
Undefined subroutine &main::LIST called at queryDB.pl line 372.
Undefined subroutine &main::EXTRACT FROM DB called at queryDB.pl line 379.
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� LMA produces 32 lines in its CSV file for every single line it should

have produced; the command above suppresses duplicate sequential

lines. DAILY-REJECT produces the correct number of output lines,

probably because it searches the Berkeley DB database rather than the

CSV file.

The output from DAILY-REJECT and the awk command is not exactly

the same; the author did not spend substantial time attempting to rectify

these differences.

1. The output from DAILY-REJECT is missing some records that are

present in the CSV file; this may indicate differences between the data

stored in the CSV and Berkeley DB files.

2. Some records output by DAILY-REJECT are truncated: they are

missing the last “|” that separates fields and also the newline following

it, so the line containing only a single space is concatenated with the

record.

In summary, LMA appears to be a proof of concept, written to demonstrate

the point of their paper, that making the information contained in log files

available in an accessible fashion is useful to systems administrators, rather

than a program intended to be useful in a production environment.

3.2 Pflogsumm

pflogsumm is designed to provide an over-view of Postfix activity,

with just enough detail to give the administrator a “heads up” for

potential trouble spots.

http://jimsun.linxnet.com/postfix_contrib.html

Last checked 2008/11/23.

Pflogsumm produces a report designed for troubleshooting rather than

in-depth analysis. It does not support saving any of the data it extracts from

log files, and it does not extract any data that it does not require to produce

http://jimsun.linxnet.com/postfix_contrib.html
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its report: the HELO hostname, queueid, start and end times, timestamps

for each log line, or message-id. Both the parsing and reporting are difficult

to extend because it is a specialised tool, unlike the easily extensible design

of PLP. It does not correlate log lines by queueid or pid, and does not need

to deal with the complications encountered during this project (§5.7 [p. 107]).

Pflogsumm produces a useful report, and successfully parsed the 93 log files it

was tested with. The results it reported were not verified in detail, but it did

not report any errors, and has an excellent reputation amongst Postfix users.

Pflogsumm has many options to include or exclude certain sections of the

report, all clearly documented; by default its report includes the following:

� Total number of mails accepted, delivered, and rejected. Total size of

mails accepted and delivered. Total number of sender and recipient

addresses and domains.

� Per-hour averages and per-day summaries of the number of mails re-

ceived, delivered, deferred, bounced, and rejected.

� For received mail: per-domain totals for the number of mails sent,

number of mails deferred, average delay, maximum delay, and bytes

delivered. For received mail: per-domain totals for size and number of

mails received.

� Number and size of mails sent and received for each address.

� Summary of why mail delivery was deferred or failed, why mails were

bounced, why mails were rejected, and warning messages from Postfix.

Pflogsumm is the only reviewed parser that distinguishes between different

rejected delivery attempts, an important requirement for this project.

3.3 Sawmill Universal Log File Analysis and

Reporting

Sawmill is a Postfix log analyzer (it also support 818 other log

formats). It can process log files in Postfix format, and gener-
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ate dynamic statistics from them, analyzing and reporting events.

Sawmill can parse Postfix logs, import them into a SQL database

(or its own built-in database), aggregate them, and generate dy-

namically filtered reports, all through a web interface. Sawmill

can perform Postfix analysis on any platform, including Window,

Linux, FreeBSD, OpenBSD, Mac OS, Solaris, other UNIX, and

more.

http://www.thesawmill.co.uk/formats/postfix.html

Last checked 2008/11/23.

Sawmill is a general purpose commercial product that parses 818 log file

formats (as of 2008/11/23) and produces reports from the extracted data. Its

data extraction facilities (described later) are too limited to save enough data

for the purposes of this project: although it can extract three different sets of

data from Postfix log files, they are not linked in any way. The documentation

does not suggest that Sawmill correlates log lines by either queueid or pid, or

deals with the other difficulties documented in §5.7 [p. 107].

Sawmill has three different Postfix log file parsers, extracting three different

sets of data:

1. http://www.thesawmill.co.uk/formats/postfix.html

(last checked 2008/11/23). Fields extracted: from, to, server, uid, relay,

status, number of recipients, origin hostname, origin IP address, and

virus. It also counts the number of and total size of all mails delivered.

The fields server, uid, relay, and virus are not explained in the

documentation: server is probably the hostname or IP address of the

server the mail is delivered to; relay might be the delivery method:

SMTP, local delivery, or Local Mail Transfer Protocol (LMTP); uid

might be the uid of the user submitting mail locally. Postfix does not

do any form of virus checking itself, so the virus field is a mystery.

2. http://www.thesawmill.co.uk/formats/postfix_ii.html

(last checked 2008/11/23). Fields extracted: from, to, RBL list, client

hostname, and client IP address. It also counts the number and total

size of all mails delivered.

http://www.thesawmill.co.uk/formats/postfix.html
http://www.thesawmill.co.uk/formats/postfix.html
http://www.thesawmill.co.uk/formats/postfix_ii.html
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3. http://www.thesawmill.co.uk/formats/beta_postfix.html

(last checked 2008/11/23). Fields extracted: from, to, client hostname,

client IP address, relay hostname, relay IP address, status, response

code, RBL list, and message-id. It also counts the number and size of

all mails delivered, processed, blocked, expired, and bounced.

Even if the three data sets were combined Sawmill would extract less

data than PLP: it omits the HELO hostname, queueid, enhanced status

code, delivery delays, and start and end times. Sawmill does not extract any

data about rejections except when the rejection is caused by a DNS Blacklist

(DNSBL) check (RBL list in the list of fields).

The source code is only available in an encrypted form, to support people

who wish to use Sawmill on operating systems or machine architectures the

company do not provide executables for. Sawmill is quite expensive, requiring

a ¿ 100 + VAT licence per report, with discounts available when buying

multiple licences (correct as of 2008/11/23); in contrast, PLP is free to use

and the code is freely available. Sawmill is supplied with thorough and well

written documentation; everything the author looked for was documented,

except for the MySQL database schema and some details of the data extracted

by the parser, e.g. what the virus field stores. A commercial version of

MySQL is required because of MySQL licensing restrictions, but Sawmill’s

documentation explains why and includes instructions on how to compile

Sawmill so that it can use a non-commercial version of MySQL (this was not

attempted during the review process).

Sawmill’s web interface supports searching on any combination of the

fields it extracts, and all searches produced accurate results. The interface

for searching is neither as simple to use nor as informative as the interface

provided by Splunk (see §3.4 on the next page). However, the administrative

interface is much easier to use than Splunk’s: it took only five minutes to

start parsing all of the log files in a directory.

When tested with the 93 test log files it performed adequately, though the

rate it processed log files at did slowdown noticeably as it progressed. Sawmill

supports reading compressed log files but it exhibits a dramatic slow down

http://www.thesawmill.co.uk/formats/beta_postfix.html
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when doing so: it took six hours to parse the first half of the log files, and

twelve hours to parse the next third; after twenty four hours spent parsing the

remaining sixth it crashed due to lack of disk space. On the second parsing

attempt the log files were uncompressed beforehand and parsing took eight

hours.

In summary, Sawmill suffers from supporting so many types of log files: it

is probably much more useful when parsing log files where each log line is self-

contained (e.g. web server log files), rather than log files where data is spread

across multiple log lines. It is not suitable as a base for this parser, because

the source code made available is encrypted and not intended for modification;

in addition the architecture would probably need to be overhauled or replaced

to deal with correlating log lines.

3.4 Splunk

Splunk is IT Search. Search and navigate IT data from applica-

tions, servers and network devices in real-time. Logs, configura-

tions, messages, traps and alerts, scripts, code, metrics and more.

If a machine can generate it — Splunk can eat it. It’s easy to

download and use and it’s very powerful.

http://www.splunk.com/

Last checked 2008/11/23.

Splunk aims to index all of an organisation’s log files, providing a cen-

tralised view capable of searching and correlating diverse log sources. The web

interface provides search functionality, generating statistics and graphs in real

time, a facility not provided by PLP. Splunk allows quite complicated searches,

based on the fields it extracts (described later) or the full text of the log line,

though it is not possible to search on partial words. Searches can be saved

for reuse; saved searches can be run periodically and the results mailed to a

recipient or sent to an external program for further processing. The author

was unable to save searches, possibly because of limitations in the free version,

and so was unable to examine the format of the data. The web interface is

http://www.splunk.com/
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optimised for interactive use rather than automated queries, and it does not

appear to be possible to write independent tools to utilise the Splunk database,

whereas PLP provides the database and leaves it to the user to utilise it

without limit or restriction. Some additional Postfix reports are supposedly

available on http://www.splunkbase.com/ (last checked 2009/04/21), but

the author was unable to find any Postfix reports, or indeed reports for any

other log file types: every category was empty, even those that the web

site claimed had numerous reports available. Many types of graphs can be

generated, though all except the bubble and heatmap graphs are variations

of a bar or pie chart. Drilling down through the graphs to select a portion of

the data is simple and intuitive, e.g. select the hour with the largest number

of events, then select a particular host, and finally a specific sender address.

All searches performed using the indexed data returned reasonable results.

The full power of SQL is available when searching the data extracted by PLP,

allowing the user to search on arbitrarily complicated conditions.

The web interface is quite attractive and simple to use when searching,

but as an administrator it seems unnecessarily difficult to perform simple

tasks. When testing Splunk it took roughly 30 minutes to figure out how

to add a single log file to be indexed for later searching, with the added

downside that the log file was copied into a spool directory before indexing,

doubling the disk space usage. The next test was to index all the log files

in a particular directory, but after three hours, reading all the available

documentation, and numerous futile attempts, the author was still unable to

index all the log files in a directory using the web interface. Using Splunk’s

command line interface rather than the web interface was more successful:

the command “splunk find logs log-directory” added 40 of the 93 log files

to the queue for indexing. Further attempts enqueued the same 40 log files,

without explaining why the others were excluded.3 The command did not

have an option to ensure the log files would be processed in the order they

were created, though such an option may be neither necessary nor beneficial

3The log files that were added multiple times appear to have been indexed once only;
presumably Splunk keeps track of the log files it has indexed and discards requests to index
log files for a second time. This may or may not be a useful feature for PLP.

http://www.splunkbase.com/
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with Splunk. Subsequently the author was successful in adding a single log

file at a time using the command “splunk add tail filename”, and then a

simple loop using that command was enough to add all the desired log files.

Splunk will periodically check all indexed log files for updates unless they

are manually removed from its list; this may or may not be useful behaviour.

Splunk did not appear to have any difficulty in indexing the log files once

they had been successfully added to its queue. PLP parses the log files it is

instructed to parse, in the order they are given; periodic parsing of log files is

a task an administrator can easily achieve with cron(8) and logrotate(8).

Copious documentation is made available on http://www.splunk.com/

(last checked 2009/04/21), but the abundance of material and lack of organi-

sation makes it hard to find the topic being sought, and searches confusingly

tended to return results from old documentation rather than new. In general

the documentation appears to have been written by someone intimately ac-

quainted with the software, who has difficulty understanding how a newcomer

would approach tasks or the questions they would ask.

Splunk supports reading compressed log files without any extra configura-

tion by the user, like PLP. The free version of Splunk limits the volume of

data indexed per day to 500MB, though a trial Enterprise licence is available

that allows indexing of up to 5GB of data per day. In 2007, the cheapest

licenced version cost $5000 plus $1000 support per annum, and limited the

volume of data indexed per day to 500MB. Prices were removed from the

Splunk website during 2008; now Splunk’s sales team must be asked for a

quote. Median log file size for the 93 log files used when evaluating PLP is

53.297 MB.

When parsing Postfix log files Splunk parses the standard syslog fields at

the beginning of the log line, and extracts any key=value pairs occurring after

the syslog prologue: to and from addresses, HELO hostname, and protocol

(SMTP, LMTP, or Extended SMTP (ESMTP)). PLP extracts noticeably

more data: client and server IP address and hostname, queueid, start and

end times, timestamps for each log line, SMTP and enhanced status codes,

delivery delays, and message-id. PLP does not make the full text of the log

line available; a few minutes work could add this to PLP if desired, but it

http://www.splunk.com/
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would greatly increase the size of the database.

Splunk is a generic tool, so it lacks any Postfix-specific support over and

above extracting the key=value fields from each log line; it makes no attempt

to correlate log lines by queueid or pid, or to handle any of the other myriad

complications discussed in §5.7 [p. 107]. Its source code is unavailable, so it

could not be used as a base for this project, even if it fulfilled all the other

requirements.

3.5 Isoqlog

Isoqlog is an MTA log analysis program written in C. It designed

to scan qmail, postfix, sendmail and exim logfile and produce usage

statistics in HTML format for viewing through a browser. It

produces Top domains output according to Sender, Receiver, Total

mails and bytes; it keeps your main domain mail statistics with

regard to Days Top Domain, Top Users values for per day, per

month and years.

http://www.enderunix.org/isoqlog/

Last checked 2009/01/11.

Isoqlog’s report lacks most of the information gathered by PLP: the data

it extracts is limited to the number of mails sent by each sender, and it only

reports on senders from the domains listed in its configuration file, making it

impossible to produce complete reports. It ignores all log lines except those

with today’s date, so it is impossible to analyse historical log files, and testing

with the 93 test log files was pointless. It does maintain a record of data

previously extracted and newly extracted data is added to it; the format of

the data store is undocumented. Almost no documentation is provided with

Isoqlog, little more than installation instructions. It does not utilise rejection

log lines in any way, so is unsuitable for the purposes of this project. Its

parsing is completely inextensible, indeed is almost incomprehensible, relying

on scanf(3), unexplained fixed offsets, and low level string manipulation; it

is the opposite end of the spectrum to PLP’s parsing. It does not handle any

http://www.enderunix.org/isoqlog/
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of the complications discussed in §5.7 [p. 107], does not gather the breadth of

data required for this project, and ignores most of the log lines produced by

Postfix.

3.6 AWStats

AWStats is a free powerful and featureful tool that generates ad-

vanced web, streaming, ftp or mail server statistics, graphically.

This log analyzer works as a CGI or from command line and shows

you all possible information your log contains, in few graphical web

pages. It uses a partial information file to be able to process large

log files, often and quickly. It can analyze log files from all major

server tools like Apache log files (NCSA combined/XLF/ELF log

format or common/CLF log format), WebStar, IIS (W3C log

format) and a lot of other web, proxy, wap, streaming servers,

mail servers and some ftp servers.

http://awstats.sourceforge.net/awstats.mail.html

Last checked 2009/01/11.

AWStats can produce simple graphs from many different services’ log files,

but supporting numerous log file formats without special purpose code limits

its functionality. The data it can extract from Postfix log files is limited in

comparison to PLP: time2, email, email r, host, host r, method, url, code, and

bytesd. No explanation for any of those fields is provided in the documentation

at http://awstats.sourceforge.net/docs/awstats_faq.html#MAIL (last

checked 2009/04/21), so the author could neither understand what data is

extracted, nor determine what data is missing in comparison to PLP, which

fully documents all the data it extracts. AWStats coerces Postfix log files into

the log file format used by the Apache web server, for analysis by AWStats’

HTTP log file parser. The converting parser only deals with a small portion of

the log lines generated by Postfix, silently skipping those it cannot parse, and

does not distinguish between different delivery attempt rejections; extending

it to parse all log lines would be at least as much work as writing a new parser.

http://awstats.sourceforge.net/awstats.mail.html
http://awstats.sourceforge.net/docs/awstats_faq.html#MAIL
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It does correlate log lines by queueid (not by pid), but it does not deal with

any of the other complications described in §5.7 [p. 107]. AWStats supports

saving data extracted from log files, but the format of the data store is not

documented. It also supports reading compressed log files, but that was not

tested.

When tested with the 93 test log files, AWStats reported that it parsed

9,240,075 (88.709%) of 10,416,129 log lines, skipping 1,176,050 (11.290%)

corrupt log lines. However, the 93 test log files contain 60,721,709 log lines,

so AWStats parsed only 15.217% of the log lines, declared that 1.936% were

corrupt, and ignored the remaining 82.846%. The parsing results were not

examined in detail or verified.

The graphs it produces give an overview of mails received for the last

calendar month, showing:

� The number of mails accepted from each host.

� How many mails were received by each recipient.

� The average number of mails accepted by the server per-day and per-

hour.

� A summary of the SMTP codes used when rejecting delivery attempts.

AWStats was not a suitable base for this project because it assumes that

all log files can be rewritten to be compatible with web server log files, and

will contain similar data; coercing Postfix log files into web server log files,

without substantial data loss, would require fully parsing the Postfix log files

without using AWStats, i.e. would require writing a separate parser anyway.

It may be possible to use AWStats’ graphing capabilities to generate reports,

by generating input for AWStats from the database populated by PLP, but

the author has not attempted that.

3.7 Anteater

The Anteater project is a Mail Traffic Analyser. Anteater supports

currently the logformat produced by Sendmail and by Postfix. The
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tool is written in 100% C++ and is very easy to customize. Input,

output, and the analysis are modular class objects with a clear

interface. There are eight useful analyse modules, writing the

result in plain ASCII or HTML, to stdout or to files.

http://anteater.drzoom.ch/

Last checked 2009/01/11.

Anteater does not have any English documentation except for the quote

above so it is impossible for this author to accurately comment on the analysis

it performs. It did not run successfully when tested, and its parsing would

certainly be out of date because Postfix has evolved considerably since this

tool was last updated (2003/11/06). Because it neither ran successfully nor

has documentation the author can read, a detailed review cannot be provided.

The Debian Linux distribution provides a translated manual page with

the copy of anteater it distributes, so the author was at least able to run

anteater with the correct arguments; sadly anteater produced zero for every

statistic, presumably because it was unsuccessful in parsing the log lines.

3.8 Yet Another Advanced Logfile Analyser

yaala is a very flexible analyser for all kinds of logfiles. It uses

parsers to extract information from a logfile, an SQL-like query

language to relate the information to each other and an output-

module to format the information appropriately.

http://yaala.org/

Last checked 2009/01/11.

YAALA uses plugins to analyse log files and produce reports in HTML

format. Using YAALA as a base for this project would have been as much

work as starting from scratch, because both the input and output modules

would need to be written specially; it might be more work to implement a

parser within the constraints of YAALA rather than independently. YAALA

supports storing previously gathered data using Perl’s Storable module, so

other Perl programs could use Storable to load, examine, and optionally

http://anteater.drzoom.ch/
http://yaala.org/


CHAPTER 3. STATE OF THE ART REVIEW 46

modify the data; PLP uses a well documented database that is accessible from

most common programming languages. Information about how YAALA stores

data was gleaned from the source code, because the format is undocumented

and differs amongst plugins.

YAALA provides a Postfix parser that extracts the following fields from

specific log lines:

Aggregations: count (not explained), bytes (sum of bytes transferred).

Keyfields: incoming host, outgoing host, date, hour, sender, recipient,

defer count, delay. Which date and hour are stored is not

documented: start time, end time, delivery time, or another

time?

YAALA’s Postfix log file parser extracts some of the fields PLP does: for

client and server it stores either the IP address or the hostname, not both;

it omits the HELO hostname, queueid, SMTP and enhanced status codes,

size of each accepted mail, start and end times, timestamps for each log line,

and message-id. It extracts one piece of data that PLP does not: how many

times delivery was deferred for each mail; this information can be calculated

from the database populated by PLP if desired. Unlike PLP, YAALA does

not maintain separate counters for different delivery attempt rejections, pre-

cluding the possibility of using the collected data for optimisation, testing,

or understanding of restrictions. YAALA’s Postfix log file parser does not

deal with the complications explained in §5.7 [p. 107], except that it does

correlate log lines by queueid (but not by pid).

YAALA provides a mini-language based on SQL that is used when generat-

ing reports; sample reports can be seen at http://www.yaala.org/samples.

html (last checked 2009/04/21). Example query for HTTP proxy servers:

requests BY file WHERE host =~ Google

The mini-language is quite limited and cannot be used to extract data for

external use, merely to create reports. Only data selected by the query will

be saved in the data store; other data will be discarded, and removed from

the data store if already present.

http://www.yaala.org/samples.html
http://www.yaala.org/samples.html


CHAPTER 3. STATE OF THE ART REVIEW 47

Testing YAALA was unsuccessful because all the queries produced a

similar error message:

lib/Yaala/Data/Core.pm: Unavailable aggregation requested:

‘‘bytes’’. Returning 0.

The underlying reason for this is that YAALA only parsed 408 (0.11%) of

360,632 log lines in the first log file; it was not tested with the remainder of

the 93 log files.

It might be possible to use PLP as a plugin with YAALA, perhaps with an

intermediate plugin interfacing between the two, but YAALA’s data store is

insufficient for PLP’s needs: PLP uses two separate tables, whereas YAALA

assumes all data will reside in one structure; YAALA’s querying mini-language

might not deal successfully with data in separate structures. This approach

has not been attempted by the author.

In summary, YAALA provides a Postfix log file parser that unsuccessfully

attempts to parse only the most common Postfix log lines, provides reasonably

flexible report generation from the limited data extracted, but has no facilities

to extract data for use in other tools.

3.9 Lire

As any good system administrator knows, there’s a lot more to

keep track of in an active network than just webservers. Lire is

hands down the most versatile log analysis software available today.

Lire not only keeps you informed about your HTTP, FTP, and

mail traffic, it also reports on your firewalls, your print servers,

and your DNS activity. The ever growing list of Lire-supported

services clearly outstrips any other software, in large part thanks

to the numerous volunteers who have pioneered many new services

and features. Lire is a total solution for your log analysis needs.

http://logreport.org/lire.html

Last checked 2009/01/11.

http://logreport.org/lire.html
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Lire is a general purpose log file parser supporting many different types

of log file. It takes a similar approach to YAALA, using plugins to parse

different log file types. The data extracted by its Postfix log file parser is not

clearly documented: The email servers’ reports will show you the number of

deliveries and the volume of email delivered by day, the domains from which

you receive or send the most emails, the relays most used, etc.

Examining the source code reveals that Lire looks for <key>=<value>

pairs in each log line, extracts them, and correlates the data by queueid (but

not by pid). This approach will extract the following data: HELO hostname,

queueid, SMTP code, sender and recipient addresses, and size of accepted

mails. Lire misses the following fields extracted by PLP: client and server IP

address and hostname, start and end times, enhanced status code, delivery

delays, timestamps of each log line, and message-id.

Lire supports multiple output formats for the reports it generates (text,

HTML, PDF, and Excel 95) but the reports do not appear to be customisable,

and are not as detailed as Pflogsumm’s; PLP does not produce any reports.

Lire supports saving extracted data for later report generation, but the format

of this data store is undocumented. PLP uses an SQL database to make

accessing the extracted data as effortless as possible. In general, Lire has

poor documentation.

Similar to AWStats and Logrep (§3.10 on the following page), Lire attempts

to correlate log lines by queueid, but not by pid, so the complete list of

recipients for each delivered mail should be available; it does not attempt to

deal with the other complications described in §5.7 [p. 107]. When testing

Lire on the 93 test log files it performed reasonably well: the numbers it

reports appear accurate, and the subset verified by the author were correct.

Its report provides summaries of:

� Delivery status and failed deliveries.

� Sender and recipient domains and servers.

� Number of deliveries and bytes per-day and per-hour.

� Recipients by domain.
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� Deliveries by relays, by size, and by delay.

� Delays by server and by domain.

� The pair of correspondents that exchanged the highest number of mails.

Lire would not be a suitable base for this project: it does not extract

enough data; does not deal with rejected delivery attempts in any way; does

not make the extracted data easily available to other programs. Its parser is

not extensible; it could easily be replaced, but that would require writing a

parser from scratch, so would not be any less work than writing PLP. PLP

could possibly be used to parse Postfix log files for Lire, but the difficulty may

outweigh the benefits, e.g. Lire’s data store may not be capable of storing the

data extracted by PLP, but the lack of documentation hinders any evaluation.

As with YAALA this approach has not been attempted by the author.

3.10 Logrep

Logrep is a secure multi-platform framework for the collection,

extraction, and presentation of information from various log files.

It features HTML reports, multi dimensional analysis, overview

pages, SSH communication, and graphs, and supports over 30

popular systems including Snort, Squid, Postfix, Apache, Sendmail,

syslog, ipchains, iptables, NT event logs, Firewall-1, wtmp, xferlog,

Oracle listener and Pix.

http://www.itefix.no/i2/index.php

Last checked 2009/01/11.

Logrep extracts fewer than half the fields PLP does:

� For mail sent and received: from address, size, and time and date.

Which date and hour are stored is not documented: start time, end

time, delivery time, or another time?

� For mail sent: to addresses, SMTP code, and delay.

http://www.itefix.no/i2/index.php
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� For mail received: the hostname of the sender.

It also counts the number of log lines parsed and skipped. It omits

client IP address and hostname, server IP address, HELO hostname, queueid,

timestamps of each log line, enhanced status code, and message-id. Log

lines are correlated based on the queueid (called sessionname [sic] within

Logrep), but not by pid. The parsing is error prone: empty fields are saved

when the log line does not match the regex, though it appears that they will

not overwrite existing data. Most notably, rejected delivery attempts are

completely ignored, making it unsuitable for the purposes of this project. It

does not try to address any of the complications in §5.7 [p. 107] except for

correlating log lines by queueid.

Logrep does not come with any documentation, though some scant docu-

mentation is available on its website (PLP provides copious documentation).

It requires a web browser to interact with it, so automated log file processing

would be difficult, whereas enabling automated processing is a key part of

PLP’s design. Sadly, all the author’s attempts to use Logrep failed, because

it was unable to access the log files selected for parsing; this appears to be a

bug rather than operator error. If the problem was caused by operator error,

the interface needs improvement because the (minimal) instructions were

followed as closely as possible, and multiple attempts were made. Because

parsing failed it was not possible to review the reports Logrep can generate

(available in HTML only), or to examine the (undocumented) format it uses

to save extracted data for subsequent reuse.

Logrep extracts far less data from Postfix log files than PLP, completely

ignores rejected delivery attempts, is effectively undocumented, does not deal

with the more complicated aspects of Postfix log files, and does not work

properly.



CHAPTER 3. STATE OF THE ART REVIEW 51

3.11 Summary

This chapter has reviewed ten programs that perform basic Postfix log file

parsing, some to a greater level of detail than others. None of the reviewed

parsers collect the breadth of information gathered by PLP, and none are

designed to be extensible to handle new log lines. Some correlate log lines

by queueid, but none correlate by pid; none deal with any of the other

complications described in §5.7 [p. 107]. All of the reviewed parsers generate

a report, and some provide a greater or lesser degree of customisation. Most

have a data store, but only LMA provides any documentation on its format;

some deliberately make the data store inaccessible to other tools. Most but

not all of the parsers provide documentation, with the quality ranging from

unusable to excellent. Fewer than half of the parsers were capable of parsing

the 93 test log files; improving or extending parsing would have been quite

a difficult task for any of the parsers, and one that the author did not have

the time to attempt. Table 3.1 on the following page provides a summary

of the parsers’ features. The overriding difference between PLP and the

other parsers reviewed herein is that none of them aim for the high level of

understanding of Postfix log files achieved by PLP.
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Table 3.1: Summary of reviewed parsers’ features

Parser Parsed test Data Custom Documentation Source
log files? store? reports? quality? code?

LMA No Yes No Poor Yes
Pflogsumm Yes No Partial � Good Yes
Sawmill Yes Yes Searches Excellent Yes �
Splunk Yes Yes Searches Abundant No

& reports but poor
Isoqlog No Yes No No English Yes

documentation
AWStats Partially Yes Partial � Good Yes
Anteater No No No None Yes
YAALA No Yes � Searches Poor Yes

& reports
Lire Yes Yes Yes Poor Yes
Logrep No Yes No None Yes
PLP Yes Yes 	 No [ � Yes

� Sections can be omitted from a report, but extra sections cannot be added.

� YAALA only stores the data required to produce the latest report; other
data will be discarded.

� Sawmill’s source code is available, but in an encrypted or obfuscated form.

	 PLP is the only parser with documentation for the format of its data store.

[ PLP defers report generation to subsequent programs, but all the necessary
documentation to produce reports is provided.

� PLP aims to have thorough and complete documentation, but the author
cannot provide an unbiased review.



Chapter 4

Parser Architecture

The parser architecture described in this chapter is flexible enough to be used

as the basis of other parsers. Obviously it is particularly suitable for writing

parsers for log files; with judicious use of cascaded parsing (see §4.3 [p. 59]),

a calculator could easily be implemented; a more ambitious project might

attempt to parse a programming language.1 To avoid cluttering the description

of the architecture with the details of implementing a parser for Postfix log

files, each topic has been given its own chapter. This chapter is focused on

the theoretical, implementation-independent aspects of the architecture; the

practical difficulties of writing a parser for Postfix log files are covered in detail

in §5 [p. 70]. This chapter presents the architecture developed for this project,

beginning with the overall architecture and design, followed by detailed

documentation of the three components of the architecture: Framework,

Actions, and Rules.

4.1 Architecture Overview

It should be clear from the earlier Postfix background (§2.3 [p. 22]) that

Postfix log files may vary widely from host to host. With this in mind, one of

the architecture’s design aims was to make parsing new inputs as effortless as

possible, to enable administrators to properly parse their own log files. The

1Lisp, where every statement is enclosed in parentheses and can easily be isolated from
the surrounding statements, might be particularly amenable.

53
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solution developed is to divide the architecture into three parts: Framework,

Actions, and Rules. Each will be documented separately, but first an overview:

Framework The framework is the structure that actions and rules plug into.

It manages the parsing process, providing shared data storage,

loading and validation of rules, storage of results, and other

support functions.

Actions Each action performs the processing required for a single cate-

gory of inputs, e.g. rejection of a delivery attempt. Actions are

invoked to process an input once it has been recognised by a

rule.

Rules Rules are responsible for classifying inputs: each rule recognises

one input variant — a single input category may have many

input variants. Each rule also specifies the action to be invoked

when an input has been recognised; rules thus provide an

extensible method of associating inputs with actions.

For each input, the framework tries each rule in turn until it finds a rule

that recognises the input, then invokes the action specified by that rule. If the

input is not recognised by any of the rules, the framework issues a warning;

the framework will usually continue parsing after this, although some parsers

might prefer to stop immediately.

Decoupling the parsing rules from their associated actions allows new rules

to be written and tested without requiring modifications to the parser source

code, significantly lowering the barrier to entry for casual users who need to

parse new inputs, e.g. part-time systems administrators attempting to combat

and reduce spam; it also allows companies to develop user-extensible parsers

without divulging their source code. Decoupling the framework, actions, and

rules simplifies all three and creates a clear separation of functionality: the

framework manages the parsing process and provides services to the actions;

actions benefit from having services provided by the framework, freeing them

to concentrate on the task of accurately and correctly processing inputs and
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the information provided by rules; rules are responsible for recognising inputs,

and extracting data from those inputs for processing by actions.

Separating the rules from the actions and framework makes it possible

to parse new inputs without modifying the core parsing algorithm. Adding

a new rule with the action to invoke and a Regular Expression (regex) to

recognise inputs is trivial in comparison to understanding an entire parser,

identifying the correct location to change, and making the appropriate changes.

Changes to a parser must be made without adversely affecting existing parsing,

including any edge cases that are not immediately obvious; an edge case that

occurs only four times in 93 log files is described in Yet More Aborted Delivery

Attempts (§5.7.12 [p. 122]). The more intrusive the changes are, the more

likely they are to introduce a bug, so reducing the extent of the changes

is important. Requiring changes to a parser’s source code also complicates

upgrades of the parser, because the changes must be preserved during the

upgrade, and they may clash with changes made by the developer. This

architecture allows the user to add new rules to a parser without having to

edit it, unless the new inputs cannot be processed by the existing actions.

If the new inputs do require new functionality, new actions can be added

to the parser without having to modify existing actions; only when the new

actions need to cooperate with existing actions will more extensive changes

be required.

Some similarity exists between this architecture and William A. Wood’s

Augmented Transition Networks (ATN) [12, 29], used in Computational Lin-

guistics to create grammars that parse or generate sentences. The resemblance

between the two (shown in table 4.1 on the next page) is accidental, but

clearly the two different approaches share a similar division of responsibilities,

despite having different semantics.

The architecture can be thought of as implementing transduction: it takes

data in one form and transforms it to another form; Postfix Log Parser (PLP)

transforms log files to a Structured Query Language (SQL) database.

Unlike traditional parsers such as those used when compiling a program-

ming language, this architecture does not require a fixed grammar specification

that inputs must adhere to. The architecture is capable of dealing with in-
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Table 4.1: Similarities between ATN and this architecture

ATN Architecture Similarity

Networks Framework Determines the sequence of transitions
or actions that constitutes a valid input.

Transitions Actions Assemble data and impose conditions the
input must meet to be accepted as valid.

Abbreviations Rules Responsible for recognising inputs.

terleaved inputs, out of order inputs, and ambiguous inputs where heuristics

must be applied — all have arisen and been successfully accommodated in

PLP. This architecture is ideally suited to parsing inputs where the input is

not fully understood or does not conform to a fixed grammar: the architecture

warns about unparsed inputs and other errors, but continues parsing as best

it can, allowing the developer of a new parser to decide which deficiencies are

most important and the order to address them in, rather than being forced

to fix the first error that arises.

4.2 Framework

The framework manages the parsing process and provides support functions

for the actions, freeing the programmers writing actions to concentrate on

writing productive code. It links actions and rules, allowing either to be

improved independently of the other, and allows new rules to be written

without needing changes to the source code of a parser. The framework is

the core of the architecture and is deliberately quite simple: the rules deal

with the variation in inputs, and the actions deal with the intricacies and

complications encountered during parsing. Finding the rule that recognises

the input is a very simple process, as shown by the pseudo-code in figure 4.1

on the following page. The framework tries each rule until it finds one that

recognises the input, then it invokes the action specified by the rule. The

framework issues a warning if the input is not recognised by any of the rules.

Most parsers will require the same basic functionality from the framework;
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Figure 4.1: Pseudo-code showing how the framework finds the rule that
recognises the input

INPUT:

for each input {

for each rule defined by the user {

if this rule recognises the input {

invoke the action specified by the rule

next INPUT

}

}

warn the user that the input was not recognised

}

it is responsible for managing the parsing process from start to finish, which

will generally involve the following:

Register actions Each action needs to be registered with the framework so

that the framework knows about it: the list of registered actions will

be used when validating rules.

Load and validate rules The framework loads the rules from wherever

they are stored: a simple file, a database, or possibly even a web server

or other network service — though that would have serious security

implications. It validates each rule to catch problems as early in the

parsing process as possible; the checks will be implementation-specific

to some extent, but will generally include the following:

� Ensuring the action specified by the rule has been registered with

the framework.

� Checking for conflicts in the data to be extracted, e.g. setting the

same variable twice.

� Checking that the regex in the rule is valid.

Some optimisation steps may also be performed during loading of rules,

as described in §6.1 [p. 130].
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Convert physical inputs to logical inputs Each rule recognises a single

input at a time: there is no facility for rules to consume more input

or push unused input back onto the input stream, although actions

may use cascaded parsing (explained in §4.3 on the following page)

to push input back onto the input stream. A physical input (e.g. a

single line read from the input stream) may contain multiple or partial

logical inputs, and the framework must pre-process these to provide a

logical input for the rules to recognise. This simplifies the rules and

actions considerably, at the cost of added complexity in the framework;

during the design phase it was decided that it was easier to deal with

the problem of parsing multiple or partial inputs once, rather than

dealing with it in every rule and action. This is trivial for Postfix log

files because they have a one-to-one mapping between physical and

logical inputs; mapping between physical and logical inputs may be

more difficult for other types of input. Some input types may require

pre-processing equivalent to parsing the physical inputs; in such cases

the framework should take the approach adopted by many other parsers:

combine the physical inputs into one complete input, use the rules

to recognise the start of the input, discard the recognised portion if

successful, and repeat until the input has been exhausted.

Classify the input The pseudo-code in figure 4.1 on the previous page

shows how rules are successively tried until one is found that recognises

the input. That pseudo-code is very simple: there may be efficiency

concerns (§6.1 [p. 130]), rule conditions (§4.4.2 [p. 63]), or rule priorities

(§4.4 [p. 61]) that complicate the process.

Invoke actions Once a rule has been found that recognises the input, the

specified action will be invoked. The framework marshals the data

extracted by the rule, invokes the action, and pushes the modified input

onto the input stream if the action uses cascaded parsing (see §4.3 on

the next page).

Shared storage Parsers commonly need to save some state information
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about the input being parsed, e.g. a compiler tracking which variables

are in lexical scope as it moves from one lexical block to another. The

framework provides shared storage to deal with this and any other

storage needs the actions may have. Actions may need to exchange data

to correctly parse the input, e.g. setting or clearing flags, maintaining a

list of previously used identifiers, or ensuring at a higher level that the

input being parsed meets certain requirements.

Save and load state The architecture can save the contents of the shared

storage it provides for actions, and reload it later so that information is

not lost between parsing runs. PLP does this because mails may take

some time to deliver and thus have their log lines split between log files;

a compiler might store data structures it builds as it parses different

files.

Specialised support functions Actions may need support or utility func-

tions; the framework may be a good location for support functions,

but if another way exists to make those functions available to all ac-

tions it may be preferable to use that way instead, maintaining a clear

separation of concerns.

4.3 Actions

Each action is a separate procedure written to process a particular category

of input, e.g. rejection of a delivery attempt. One input category may have

many input variants; in general each action will handle one input category,

with each rule recognising one input variant. It is anticipated that parsers

based on this architecture will have many actions, and each action may be

invoked by many rules, with the aim of having simple rules and tightly focused

actions. An action may need to process different input variants in slightly

different ways, but large variation in the processing performed by an action

indicates the need for a new action and a new category of input; if an action

becomes overly complicated it starts to turn into a monolithic parser, with

too much logic contained in a single procedure.
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The ability to easily add special purpose actions to deal with difficulties

and new requirements that are discovered during parser development is one

of the strengths of this architecture. When a new requirement arises an

independent action can be written to satisfy it, instead of having to modify a

single monolithic function that processes every input, with all the attendant

risks of adversely affecting the existing parsing. Sometimes the new action

will require the cooperation of other actions, e.g. to set or check a flag, so

actions are not always self-contained, but there will still be a far lower degree

of coupling and interdependency than in a monolithic parser.

During development of PLP it became apparent that in addition to the

obvious variety in log lines there were many complications to overcome.

Some were the result of deficiencies in Postfix’s logging, and some of those

deficiencies were rectified by later versions of Postfix, e.g. identifying bounce

notifications (§5.7.4 [p. 112]); others were due to the vagaries of process

scheduling, client behaviour, and administrative actions. All were successfully

accommodated in PLP: adding new actions was enough to overcome several

of the complications; others required modifications to a single existing action

to work around a difficulty; the remainder were resolved by adapting existing

actions to cooperate and exchange extra data (via the framework), changing

their behaviour as appropriate based on that extra data. Every architecture

should aim to make the easy things easy and the hard things possible; the

successful implementation of PLP demonstrates that this architecture achieves

that aim.

Actions may modify the input they process and return it to the framework,

where it will be parsed as if read from the input stream, allowing for a

simplified version of cascaded parsing [13]. This powerful facility allows

several rules and actions to parse a single input, potentially simplifying both

rules and actions. A simple example is to have one rule and action removing

comments from inputs, so that other rules and actions do not have to handle

comments at all; obviously if comment characters can be escaped or embedded

in quoted strings the implementation must be careful not to remove those. For

some inputs this kind of pre-processing can greatly simplify parsing, echoing

the simplification provided by the framework presenting rules and actions
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with logical inputs rather than physical inputs. A more complex example

of cascaded parsing is evaluating simple arithmetic expressions, where sub-

expressions enclosed in parentheses must be evaluated first; cascaded parsing

can be used to parse and evaluate the sub-expressions, substituting the result

into the original expression for subsequent re-evaluation. Actions do not need

to be specially registered with the framework or be declared in a particular

way to use cascaded parsing: actions that do not use cascaded parsing will

return nothing, those that do will simply return a string to be parsed.

This section is quite brief, because the architecture deliberately imposes

as few restrictions, conditions, and conventions as possible on actions, to

allow maximum flexibility for parsers based on this architecture.

4.4 Rules

Rules are responsible for recognising inputs: each rule should recognise one

and only one input variant; an input category with multiple input variants

should have multiple rules, one for each variant. Rules will typically use a

regex when recognising inputs, but other approaches may prove useful for

some applications, e.g. comparing fixed strings to the input, or checking the

length of the input; for the remainder of this thesis it will be assumed that a

regex is used. Each rule must specify the regex to recognise inputs and the

action to invoke when recognition is successful, but implementations are free

to add any other attributes they require; §5.3.2 [p. 79] describes the attributes

used in PLP, and some generally useful attributes will be discussed later in

this section.

Using the rules is simple: the first rule to recognise the input determines

the action that will be invoked; there is no backtracking to try alternate rules,

and no attempt is made to pick a best rule. §4.4.2 [p. 63] contains an example

which requires that the rules are used in a specific order to correctly parse the

input, so a mechanism is needed to allow the author of the rules to specify

that ordering. Each rule can have a priority attribute: when recognising

inputs, the framework should try the rules in the order specified by their

priority attributes, giving the ruleset author fine-grained control over the
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order that rules are used in. The priority attribute may be implemented as a

number, or as a range of values, e.g. low, medium, and high, or in a different

fashion entirely if it suits the implementation. Rule ordering for efficiency

is a separate topic that is covered in §6.1.2 [p. 137]; overlapping rules are

discussed in §4.4.3 [p. 65].

In Context Free Grammar (CFG) terms the rules could be described as:

<input> 7→ rule-1 | rule-2 | rule-3 | . . . | rule-n

This is not entirely correct because the rules are not truly context free:

rule conditions (described in §4.4.2 on the next page) restrict which rules will

be used to recognise each input, imposing a context of sorts.

4.4.1 Adding New Rules

The framework issues a warning for each unparsed input, so it is clearly

evident when the ruleset needs to be augmented. Parsing new inputs is

achieved in one of three ways:

1. Modify an existing rule’s regex, because the new input is part of an

existing variant.

2. Write a new rule that pairs an existing action with a new regex, adding

a new variant to an existing category.

3. Create a new category of inputs, write a new action to process inputs

from the new category, and write a new rule pairing the new action

with a new regex.

Decoupling the rules from the actions and framework enables other rule

management approaches to be used, e.g. instead of manually editing existing

rules or adding new rules, machine learning techniques could be used to

automate the process. If this approach was taken, the choice of machine

learning technique would be constrained by the size of typical data sets (see

§6.1 [p. 130]). Techniques requiring the full data set when training would

be impractical; Instance Based Learning [8] techniques that automatically

determine which inputs from the training set are valuable and which inputs
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can be discarded might reduce the data required to a manageable size. A

parser could also dynamically create new rules in response to certain inputs,

e.g. parsing a subroutine declaration could cause a rule to be created that

parses calls to that subroutine, checking that the arguments used agree with

the subroutine’s signature. These avenues of research and development have

not been pursued by the author, but the architecture allows them to easily

be undertaken independently.

4.4.2 Attaching Conditions to Rules

Rules can have conditions attached that will be evaluated by the framework

before attempting to use a rule to recognise an input: if the condition is true

the rule will be used, if not the rule will be skipped. Conditions can be as

simple or complex as the parser requires, though naturally as the complexity

rises so too does the difficulty in understanding how different rules and actions

interact. The framework has to evaluate each condition, so as the complexity

of conditions increases so will the complexity of the code required to evaluate

them. Beyond a certain level of complexity, conditions should probably be

written in a proper programming language, e.g. taking advantage of dynamic

languages’ support for evaluating code at run-time, or embedding a language

like Lua into the parser. If an implementation is going to use conditions so

complex that they will require a Turing-complete programming language, the

design may need to be revisited, including the decision to use this architecture

— there may be other architectures more suitable.

Conditions that only examine the input will be the easiest conditions

to understand, because they can be understood in isolation; they do not

depend on variables set by actions or other rules. Conditions that examine

the input can be complex if required, but simple conditions can be quite useful

too, e.g. every Postfix log line contains the name of the Postfix component

that produced it, so every rule used in PLP has a condition specifying the

component whose log lines it recognises, reducing the number of rules that

will be used when recognising a log line (see §5.6.4 [p. 106] for details) and

increasing the chance that the log line will be correctly recognised.
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Conditions can also check the value of variables that have been set by

either actions or rules; it is easier to understand how a variable’s value will

be used and changed if it is set by rules only, rather than by actions, because

the chain of checking and setting variables can be followed from rule to rule.

The downside to actions setting variables that are used in rule conditions is

action at a distance: understanding when a rule’s condition will be true or

false requires understanding not just every other rule but also every action.

The framework probably does not need to support a high level of complexity

and flexibility when rules are setting variables; however, if the framework

supports complex conditions, that code can probably be easily extended

to support complex variable assignments too. The level of complexity the

framework supports when evaluating conditions and setting variables has two

costs that must be taken into account when designing a parser: the difficulty

of implementation, and the difficulty of understanding or writing correct rules;

the flexibility provided by complex conditions may be outweighed by the

difficulty in understanding the interactions between rules that use them.

An example of how rule conditions can be used is parsing C-style comments,

which start with /* and end with */; the start and end tokens can be on one

line, or may have many lines between them. Table 4.2 on the following page

shows the regexes, conditions, and state changes of the four rules required to

parse C-style comments. These are simplified rules, e.g. rules one and two will

incorrectly recognise the comment start token if it is within a quoted string.

Rules one and two will be used when the parser is parsing code, not comments:

rule one recognises a comment that is contained within one line and leaves

the parser’s state unchanged; rule two recognises the start of a comment

and changes the parser’s state to parsing comments instead of parsing code.

Rules three and four will be used when the parser is parsing a comment: rule

three recognises the end of a comment and switches the parser’s state back

to parsing code; rule four recognises a comment line without an end token

and keeps the parser’s state unchanged. It is important that the rules are

applied in the order listed in table 4.2 on the next page because rule two

overlaps with rule one, and rule four overlaps with rule three; §4.4 [p. 61]

has explained how this is achieved. §4.4.3 on the next page will discuss the
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benefits and difficulties of using overlapping rules.

Table 4.2: Rules to parse C-style comments

No. Regex Condition Variable Changes

1 /\*.*?\*/ state == parsing code
2 /\*.* state == parsing code state = parsing comment
3 .*\*/ state == parsing comment state = parsing code
4 .* state == parsing comment

Note that “state” is merely a descriptive name for the variable; the variable
can be called anything at all.

4.4.3 Overlapping Rules

When adding new rules, the rule author must be aware that the new rule

may overlap with one or more existing rules, i.e. some inputs could be parsed

by more than one rule. Unintentionally overlapping rules lead to inconsistent

parsing and data extraction because the first rule to recognise the input wins,

and the order in which rules are used might change between parser invocations.

Overlapping rules are frequently a requirement, allowing a more specific rule

to recognise some inputs and a more general rule to recognise the remainder,

e.g. separating Simple Mail Transfer Protocol (SMTP) delivery to specific

sites from SMTP delivery to the rest of the world. Using overlapping rules

simplifies both the general rule and the more specific rule. Overlapping rules

should have a priority attribute to specify their relative ordering; negative

priorities may be useful for catchall rules. The architecture does not try to

detect overlapping rules: that responsibility is left to the author of the rules.

Overlapping rules can be detected by visual inspection, or a program

could be written to analyse the regexes in a ruleset. Traditional regexes

are equivalent in computational power to Finite Automata (FA) and can

be converted to FA, so regex overlap can be detected by finding a non-

empty intersection of two FA. Perl 5.10 regexes [15] are more powerful

than traditional regexes: they can match correctly balanced brackets nested

to an arbitrary depth, e.g. /^[^<>]*(<(?:(?>[^<>]+)|(?1))*>)[^<>]*$/

matches z<123<pq<>rs>j<r>ml>s. Matching balanced brackets requires the
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regex engine to maintain state on a stack, so Perl 5.10 regexes are equiv-

alent in computational power to Push-Down Automata (PDA); detecting

overlap may require calculating the intersection of two PDA instead of two

FA. PDA intersection is not closed, i.e. the result cannot always be imple-

mented using a PDA, so intersection may be intractable sometimes, e.g.:

a∗bncn ∩ anbnc∗ → anbncn. Detecting overlap amongst n regexes requires

calculating n(n−1)
2

intersections, resulting in O (n2x) complexity, where x is

the cost of calculating FA or PDA intersection. This is certainly not a task

to be performed every time a parser runs: naive detection of overlap amongst

PLP’s 184 rules would require calculating 16,836 intersections.

When detecting overlap, any conditions attached to rules must be taken

into account, because two rules whose regexes overlap may have conditions

attached that prevent the rules overlapping. A less naive approach to overlap

detection would first check for overlapping conditions amongst rules, and then

check for overlap between the regexes of each pair of rules with overlapping

conditions. Rule overlap is not transitive, e.g. given these three conditions:

1. total < 10

2. total > 20

3. total < 30

The first and second conditions do not overlap, but the third condition

overlaps with both the first and second conditions. When rules are paired

based on how their conditions overlap, the complexity of detecting overlap

amongst n rules is O (n2y + |o|x), where:

y = cost of checking for overlap between two conditions

o = set of pairs of rules with overlapping conditions

x = cost of checking for overlap between two regexes

In the worst case, |o| above will be equal to n2. For this approach to be

more efficient than the naive approach, y must be significantly lower than x.

If y is higher than x then the checks for overlap should be performed in the

opposite order: check for regex overlap first, then check for condition overlap

only between pairs of rules with overlapping regexes.
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Once conditions pass a certain level of complexity, determining if two

conditions overlap becomes intractable, because it requires so much knowledge

of other rules and possibly even actions. For example, given two rules

with conditions verbose == true and silent == true, logically these rules

should not overlap, yet there is nothing to stop both variables being set to

true by one or more rules or actions. If variables used in conditions can be set

by actions, determining if two conditions overlap is impossible: the Halting

Problem shows that it is impossible for one program to answer questions

about another program’s behaviour if the inquiring program is implemented

on a computational machine whose power is equal or less than the power of

the computational machine the other program is implemented upon.

4.4.4 Pathological Rules

It is possible to write pathological regexes, which fall into two main categories:

regexes that match inputs they should not, and regexes that consume excessive

amounts of CPU time during matching. Defining a regex that matches inputs

it should not is trivial: /^/ matches the start of every input. This regex

would be found by a tool that detects overlapping rules, and would easily be

noticed by visual inspection, but more complex regexes would be harder to

find. Regexes that match inputs more than they should are a problem not

because of excessive resource usage, but because they may prevent the correct

rule from recognising the input. If an adaptive ordering system is used to

prioritise rules that frequently recognise inputs (see §6.1.2 [p. 137]), then a

rule with a regex that matches inputs it should not may be promoted up

through the list, displacing an increasing number of correct rules as it rises.

Excessive CPU time is usually consumed when a regex fails to match

an input, and the regex engine backtracks many times because of alteration

or nested quantifiers; successful matching is generally quite fast with such

regexes, so problematic regexes may go unnoticed for a long time. For

example, with most regex engines matching double quoted strings with

\"([^"\\]+|\\.)*"\ is very fast when a match can be found, but when

the match fails its computational complexity for a string of length n is
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O(2n); see [6] for in-depth discussion of nested quantifiers, backtracking,

alteration, and capturing groups. Pathological regexes that consume excessive

CPU time can be difficult to detect, whether by visual inspection or by

machine inspection, but if a regex is converted to a FA or the internal

representation used by the regex engine, it may be possible to determine

if nested quantifiers or other troublesome constructs are present. Modern

regex engines have addressed many of these problems, e.g. the regex to

match double quoted strings given above fails immediately with Perl 5.10,

regardless of the input length, because the regex engine looks for both of

the required double quotes first. Similarly, Perl 5.10’s regex engine optimises

alterations starting with literal text into a trie, which has matching time

proportional to the length of the alternatives, rather than the number of

alternatives. Perl regexes can use (?>pattern), which matches pattern

the first time the regex engine passes over it, and does not change what it

originally matched if the regex engine backtracks over it, alleviating problems

caused by excessive backtracking; Prolog users will notice a similarity to the !

(cut) operator. A presentation showing some of Perl 5.10’s new regex features

is available at http://www.regex-engineer.org/slides/perl510_regex.

html (last checked 2009/03/03).

Conditions can vary in complexity from simple equality through to a

Turing-complete language, so enumerating pathological conditions is difficult

if not pointless. Conditions that check variables or the input in uncomplicated

ways may exhibit unexpected or incorrect behaviour, but are unlikely to exhibit

pathological behaviour. Deciding if a more complex condition’s behaviour

is pathological or simply a bug is difficult and to some extent is a matter

of opinion. When this architecture has received more widespread usage,

consensus should be reached on the topic of pathological conditions.

4.5 Summary

This chapter has presented the parser architecture developed for this project.

It started with a high level view of the architecture, describing how it achieves

its design aim of being easily extensible for users, and the advantages that

http://www.regex-engineer.org/slides/perl510_regex.html
http://www.regex-engineer.org/slides/perl510_regex.html
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being easily extensible brings to parser authors. The three main components

of the architecture were documented in detail, explaining each component’s

responsibilities and the functionality it provides, plus any difficulties associated

with the components. The framework provides several support functions and

manages the parsing process, enabling simple rules and actions to be written.

The actions are simple to understand, because the architecture does not

impose any structure or requirements upon them: parser authors are free

to do anything they want within an action. The architecture’s support for

cascaded parsing was described in the actions section, with an example to

illustrate how it can be useful for general parsing. The rules section was

the longest section in this chapter, because although the rules appear to be

quite simple — recognise an input and specify the action to invoke — they

have subtle behaviour that needs to be clearly explained. When extending

a ruleset, a decision needs to be taken about whether the input should be

recognised by extending an existing rule, by adding a new rule to an existing

input category, or by adding a new input category, action, and rule. Rules

can have conditions attached to them, restricting the set of rules used to

recognise an input; the complexity of the conditions used greatly influences

the difficulty of writing a correct ruleset or understanding and extending an

existing ruleset. Overlapping rules are frequently a requirement in a parser,

and their use can greatly simplify some rules, but they can be a source of bugs

because they can recognise inputs unexpectedly. The framework does not try

to detect overlapping rules, because overlap amongst rules may be valid and

is quite often intentional; that responsibility falls to the author of the ruleset.

The difficulty involved in detecting overlap is proportional to the complexity

of a ruleset’s regexes and conditions, and may be possible for a human yet

intractable or impossible for a program. The rules section concludes with a

discussion of pathological rules, concentrating on pathological regexes.
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Postfix Log Parser

This chapter documents the implementation of Postfix Log Parser (PLP), a

parser for Postfix log files based on the architecture described in §4 [p. 53].

Any design may look good when examined in the abstract, but the real

test of the design comes with the first concrete implementation; only then

do any practical difficulties come to light. Implementing this architecture

was straightforward — the difficulties came not from the architecture, but

from anomalies in the log files and Postfix’s behaviour, as described in §5.7

[p. 107]. PLP successfully deals with all the difficulties that were discovered

during its development, but further difficulties may arise during future usage;

unfortunately solving all potential difficulties that may arise is an impossible

task, but the descriptions of the solutions developed thus far should help if

someone needs to solve a problem of their own.

PLP deals with all the eccentricities and oddities of parsing Postfix log files,

presenting the resulting data in a normalised, simple to use representation.

Unfortunately, dealing with the complications that arise sometimes requires

the parser to discard log lines (e.g. §5.7.5 [p. 113]), and, less frequently, to

discard a data structure (e.g. §5.7.7 [p. 116]). PLP can parse log files from

Postfix version 2.2 through to version 2.5, and should parse log files from later

versions with only minor modifications or an updated ruleset. The parser’s

task is to follow the journey each mail takes through Postfix, combining

the data captured by rules into a coherent whole, and saving it in a useful

70
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and consistent form. The intermingling of log lines from different mails

immediately rules out the possibility of handling each mail in isolation; the

parser must handle multiple mails in parallel, each potentially at a different

stage in its journey, without any interference between mails — except in the

minority of cases where intra-mail interference is required, e.g. mail re-injected

for forwarding (§5.7.3 [p. 110]). The best way to deal with intermingling of

log lines is to maintain state information for every unfinished mail, and to

manipulate the appropriate mail correctly for each log line encountered.

This chapter begins with the assumptions under which PLP was designed

and written, followed by a flowchart showing the most common paths taken

through Postfix and PLP, with a description of the stages and stage transitions.

The second topic is the Structured Query Language (SQL) database that

provides storage for the parser: any future work that analyses gathered data

will do so using the database, so the database schema acts as an Application

Programming Interface (API). A diagram of the database schema is provided,

plus documentation for every table and field.

The next three sections document the implementation of the three compo-

nents of the architecture. First is the framework, including its initialisation

phase, the parsing process, and the conveniences it offers to users of PLP;

that section finishes by describing features that are important for this thesis

but not strictly necessary for parsing: the performance data collected by

the framework, the optimisations that can be disabled to show their effect,

and the debugging options the framework provides. The second component

of the architecture is the actions, starting with a graph showing how often

each action is specified by rules, a description of why some actions are more

popular than others, and how this popularity has no influence on how often

an action is invoked. Every action that is part of PLP is documented, and the

actions section concludes with a description of the process of adding a new

action. Rules are the third component of the architecture, and also the most

visible to advanced users, e.g. systems administrators, because it is likely

that they will need to add their own rules to recognise their own log lines. A

sample rule used by PLP is examined, with every field clearly documented;

that is followed by a description of adding new rules, and how to determine
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the value of each of the new rule’s fields. PLP provides a utility to create

Regular Expression (regex)es from unrecognised log lines; the algorithm it

uses is documented, including the differences between it and the original

algorithm it is based on. The rules section finishes with a discussion of how

PLP uses rule conditions and overlapping rules, plus a description of the

regex snippets provided to ease the process of writing regexes.

On first inspection, Postfix log files look like they will be simple to parse,

but this impression turns out to be incorrect. The many complications and

difficulties encountered while writing PLP, and the solutions developed to

overcome them, are documented in §5.7 [p. 107]. This chapter finishes with

a list of PLP’s limitations, and some possible improvements that could be

implemented.

5.1 Assumptions

PLP makes a few (hopefully safe and reasonable) assumptions:

� The log files are whole and complete: nothing has been removed, either

deliberately or accidentally (e.g. log file rotation gone awry, filesystem

filling up, logging system unable to cope with the volume of log mes-

sages). On a well run mail server it is extremely unlikely that any of

these problems will arise, though the likelihood increases when suffering

from a deluge of spam or a mail loop. When parsing individual log

files in isolation, it is highly likely that some mails will have log lines in

previous log files, and others will have log lines in subsequent log files;

to alleviate this problem PLP supports saving and loading its state

tables, so they can be preserved between log files.

� Postfix logs enough information to make it possible to accurately re-

construct the actions it has taken. Heuristics are used in several places

when parsing; see §5.7.4 [p. 112], §5.7.5 [p. 113], and §5.7.9 [p. 119] for

details. At least one difficulty encountered while writing PLP (§5.7.12

[p. 122]) could not be solved using the data in the log files, and requires

a brute force approach.
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� The Postfix queue has not been tampered with, causing unexplained

appearance or disappearance of mail. This may happen if the adminis-

trator deletes mail from the queue without using postfix/postsuper,

or if the server suffers from filesystem corruption.

In some ways this task is similar to reverse engineering or replicating a

black box system based solely on its inputs and outputs. Thus far, analysis of

the log files has been enough to reconstruct Postfix’s behaviour, but for other

programs the techniques described in [7] may be useful. Some advantages

come from treating Postfix as a black box during parser development:

� Reading and understanding the source code would require a significant

investment of time: Postfix 2.5.5 has 17MB of source code. Each

subsequent version would require further work to investigate the changes;

many of those changes, although they improve Postfix’s internals, would

not have any effect on its externally observable behaviour.

� PLP is developed using real world log files rather than the idealised log

files someone would naturally envisage when reading the source code,

which cannot accurately communicate the variety of orderings in which

log lines are found in log files.

� The parser acts as a second source of information about Postfix’s

operation, based on empirical evidence gathered from log files. A

separate project could compare the empirical knowledge inherent in

PLP with Postfix’s documentation and source code to see how closely

the two agree.

5.2 Parser Flow Chart

The flow chart in figure 5.1 on the next page shows the most common paths a

connection or mail can take through PLP; decision boxes and the difficulties

described in §5.7 [p. 107] are excluded for the sake of clarity. The flow chart

is intended to be a graphical overview of how a mail progresses through
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both Postfix and PLP, providing an overall context into which the detailed

descriptions in the remainder of this chapter will fit, in particular the actions

(§5.5 [p. 89]) and complications (§5.7 [p. 107]). The states and state transitions

shown in the flow chart will be explained in this section.

Figure 5.1: Postfix Log Parser flow chart

1: Connection from
remote client
for SMTP.

4: Postfix rejects a
mail delivery attempt

5: Create a new
data structure when
a mail is accepted,
copying the remote
client's IP address

and hostname

3: Internally generated mail,
e.g. bounce notifications.

2: Local mail,
submitted via sendmail

or postdrop.

6: Remote client disconnects,
either successfully
or with an error.

7: Enter in database.
If error:

8: Save data from
delivery attempts.

 Accepted mails

9: Track child of this mail.

10: Mail has been delivered,
bounced, expired, or deleted.

Everything starts off with a mail entering the system, whether by local

submission via postfix/sendmail or postfix/postdrop, by Simple Mail

Transfer Protocol (SMTP), by re-injection because of forwarding, or generated

internally by Postfix. Local submission is the simplest of the four: a queueid
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is assigned immediately (action: PICKUP; flowchart: 2), and the mail moves

on to the delivery stage. Re-injection because of forwarding lacks explicit log

lines of its own; it is explained fully in §5.7.3 [p. 110]. Internally generated

mails lack any explicit origin in Postfix 2.2.x and must be detected using

heuristics as described in §5.7.4 [p. 112]; later versions of Postfix do provide

log lines for internally generated mails (action: BOUNCE CREATED; flowchart: 3).

Bounce notifications are the primary example of internally generated mails,

though other types exist, e.g. Postfix may generate mails to the administrator

when it encounters configuration errors.

SMTP is more complicated than the others:

1. The remote client connects (action: CONNECT; flowchart: 1).

2. This is followed by rejection of one or more mail delivery attempts (ac-

tion: DELIVERY REJECTED; flowchart: 4); acceptance of one or more mails

(action: CLONE; flowchart: 5); failure of the remote client’s connection

(action: DELIVERY ERROR; flowchart: 6); or some random interleaving

of two or more of the above.

3. The client disconnects (action: DISCONNECT or TIMEOUT; flowchart: 6),

either normally or with an error. If Postfix has rejected any mail delivery

attempts the data gathered from those rejections will be saved to the

database (action: DISCONNECT; flowchart: 7); if there were no rejections

there will not be any data to save. Any accepted mails will already

have a separate data structure, and will be delivered in the same way

as mails that entered the system by any other route.

The obvious counterpart to mail entering the system is mail leaving the

system, whether by deletion, bouncing, expiry, local delivery, or remote

delivery. All five are handled in the same way:

1. The mail will have one or more delivery attempts (action: MAIL SENT

or SAVE DATA; flowchart: 8).

2. Sometimes mail is re-injected for forwarding and the child mail needs

to be tracked with the parent mail (action: TRACK; flowchart: 9); the

handling of re-injected mails is described in §5.7.3 [p. 110].
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3. After one or more delivery attempts the mail will be delivered (action:

MAIL SENT; flowchart: 8), bounced (action: MAIL BOUNCED; flowchart: 8),

expired (action: EXPIRY; flowchart: 8), or deleted by the administrator

(action: DELETE; flowchart: 8).

4. The mail is removed from the Postfix queue. This is the last log line

for this particular mail, though it may be indirectly referred to if it was

re-injected. The mail is cleaned up and entered in the database, then

deleted from the state tables (action: COMMIT; flowchart: 10).

It should be emphasised that the sequence above happens whether the

mail is delivered to a mailbox, piped to a command, delivered to a remote

server, bounced (because of a mail loop, delivery failure, or five day timeout),

or deleted by the administrator, unless the mail is either parent or child of

re-injection, as explained in §5.7.3 [p. 110].

5.3 Database

An SQL database is used to store both the rules and the data gleaned by

parsing Postfix log files. Understanding the database schema is helpful in

understanding the actions of the parser, and essential to developing further

applications that utilise the data; §5.3.1 on the next page describes how the

database schema functions as an API.

The database schema can be conceptually divided in two: the rules used

to recognise log lines, and the data saved from the parsing of log files. Each

rule has a regex to recognise log lines and capture data from them, and

specifies the action to be invoked when a log line is recognised; they also have

several other fields used by the parser, and several fields that aid the user in

understanding the meaning of the log lines recognised by each rule. The rules

are described in detail in §5.6 [p. 97], but the rules table is documented in

§5.3.2 [p. 79] with the rest of the database schema.

The data saved from parsing log files is divided into two tables: connections

and results. The connections table contains an entry for every mail accepted

and every connection that rejected a delivery attempt; the individual fields
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will be described in §5.3.3 [p. 82]. The results table will have at least one

entry for each entry in the connections table; its fields will be covered in detail

in §5.3.4 [p. 83]. A diagram of the database schema is provided in figure 5.2

[p. 80], to complement the in-depth descriptions of each table.

An important but easily overlooked benefit of storing the rules in the

database is the link between rules and results: if more information is required

when examining a result, the rule that produced the result is available for

inspection because each result references the rule that created it. No ambiguity

is possible about which rule or action created a particular result, eliminating

one potential source of confusion.

A clear, comprehensible schema is essential when using the data extracted

from log lines; it is more important when using the data than when storing

it, because storing the data is a once-off operation, whereas utilising the data

requires frequent searching, sorting, and manipulation of the data.

5.3.1 Using a Database to Provide an Application Pro-

gramming Interface

The database populated by PLP provides a simple interface to Postfix log files.

Although the interface is a database schema rather than a set of functions in

a library, it provides the same benefits as any other API: a stable interface

between the user and the creator of the data, allowing code on either side of

the interface to be changed without adverse effects, as long as the interface

is adhered to. Programs that use the database can range from the simple

examples in §2.1 [p. 18] to far more complex data mining tools and machine

learning algorithms.

Using a database simplifies writing programs that need to interact with

the data in several ways:

1. Most programming languages have facilities for database access, allowing

a developer to write programs that use the gathered data in their

preferred programming language, rather than being restricted to the

language the parser is written in.
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2. Databases provide complex querying and sorting functionality for the

user without requiring large amounts of programming. All databases

have one or more programs, of varying complexity and sophistication,

that can be used for ad hoc queries with minimal investment of time.

3. Databases are easily extensible, e.g.:

� New columns can be added to tables, using DEFAULT clauses or

TRIGGERS to populate them.

� A VIEW gives a custom arrangement of data with minimal effort.

� Triggers can be written to perform actions when certain events

occur. In pseudo-SQL:

CREATE TRIGGER ON INSERT INTO results

WHERE sender = "boss@example.com"

AND rule_id = rules.id

AND rules.action = "DELIVERY_REJECTED"

SEND PANIC EMAIL TO "postmaster@example.com";

� Other tables can be added to the database, e.g. to cache historical

or computed data, or to incorporate data from other sources.

4. Some databases support granting access on a fine-grained basis, e.g.

allowing the finance department to produce invoices, the helpdesk

to run limited queries as part of dealing with support calls, and the

administrators to have full access to the data.

5. SQL is reasonably standard and many people will already be familiar

with it; for those unfamiliar with SQL, lots of resources are available

from which to learn, e.g. http://philip.greenspun.com/sql/ (last

checked 2009/02/23). Although every vendor implements a different

dialect of SQL, the basics are the same everywhere. Depending on the

database in use there may be tools available that reduce or remove the

requirement to know SQL.

http://philip.greenspun.com/sql/
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Storing the results in a database will also increase the efficiency of using

those results, because the log files only need to be parsed once rather than

each time the data is used; indeed the database may be used by someone

with no access to the original log files.

5.3.2 Rules Table

Rules are discussed in detail in §5.6 [p. 97], but the structure of the rules

table is documented here alongside the other tables in the database. Rules are

created by the user, and will not be modified by PLP, except when it updates

the hits and hits total fields. Rules recognise individual log lines, capturing

data to be saved in the connections and results tables, and specifying the

action to invoke for each recognised log line.

Each rule must provide values for most of the fields below; all fields are

required unless otherwise stated in the description.

id A unique identifier that other tables can use when re-

ferring to a specific rule. This will be assigned by the

database.

name A short name for the rule.

description This field should describe the event causing the log lines

this rule recognises, e.g. “Mail has been delivered to the

LDA (typically procmail)”.

restriction name The name of the Postfix restriction that caused the rejec-

tion of the mail delivery attempt. This field is valid only

for rules that recognise rejection log lines, i.e. rules that

have an action of DELIVERY REJECTED.

program The Postfix component (e.g. postfix/smtpd) whose log

lines the rule recognises; see §5.6.4 [p. 106] for full details

of how this attribute is used.

regex The regex to recognise log lines with, as documented in

§5.6.3 [p. 104].
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Figure 5.2: Diagram of the database schema

Rules Table

id

name

description

restriction name

program

regex

action

connection data

result data

priority

hits

hits total

Connections TableResults Table

id

client hostname

client ip

server hostname

server ip

helo

queueid

start

end

id

connection id

rule id

timestamp

warning

recipient

sender

size

message id

smtp code

enhanced status code

delay

delays

data

debug



CHAPTER 5. POSTFIX LOG PARSER 81

connection data Sometimes rules need to provide data that is not present

in the log line, e.g. setting client ip when a mail is

being delivered to another server; any field in the connec-

tions table can be set in this way. The format is:

client hostname = localhost,

client ip = 127.0.0.1

i.e. semi-colon or comma separated assignment state-

ments. Commas and semi-colons cannot be escaped and

thus cannot be included in data, because this feature is

intended for use with small amounts of data and dealing

with escape sequences was deemed unnecessary. This

field is optional.

result data The result table equivalent of connection data, also

optional.

action The action to be invoked when this rule recognises a log

line; a full list of actions and the parameters they are

invoked with can be found in §5.5.1 [p. 92].

hits This counter is maintained for every rule and incremented

each time the rule successfully recognises a log line. At

the start of each run PLP sorts the rules by hits, and

at the end of the run it updates every rule’s hits field in

the database. Assuming that the distribution of log lines

is reasonably consistent across log files, ordering rules

by their recognition frequency will reduce the parser’s

execution time. Rule ordering for efficiency is discussed

in §6.1.2 [p. 137]. This field will be set by the parser

rather than the rule author.

hits total The total number of log lines recognised by this rule over

all runs of the parser; hits starts from zero each time the

parser is run, but hits total is not. This field will be set

by the parser rather than the rule author.
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priority This is the user-configurable companion to hits: when

the list of rules is sorted by the parser, priority overrides

hits. This allows more specific rules to take precedence

over more general rules, as described in §4.4 [p. 61]. This

field is optional.

debug If this field is true, a warning will be issued with informa-

tion about the rule and the log line every time this rule

recognises a log line. This field is optional.

5.3.3 Connections Table

Every accepted mail and every connection that rejected a mail delivery

attempt will have a single entry in the connections table containing all of the

fields below. For an incoming connection, the client is the remote machine,

and the server is the local machine; for outbound mail delivery attempts, the

roles are reversed.

id This field uniquely identifies the row. This will be as-

signed by the database.

server ip The IP address of the server.

server hostname The hostname of the server, it will be unknown if the IP

address could not be resolved to a hostname via DNS.

client ip The client IP address.

client hostname The hostname of the client, it will be unknown if the IP

address could not be resolved to a hostname via DNS.

helo The hostname used in the HELO command. The HELO

hostname occasionally changes during a connection, pre-

sumably because spam or virus senders think it is a good

idea. Postfix only logs the HELO hostname when it re-

jects a mail delivery attempt, but it is quite simple to

rectify this as described in §5.8 [p. 126].
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queueid The queueid of the mail if the connection represents an

accepted mail, or NOQUEUE if not.

start The timestamp of the first log line.

end The timestamp of the last log line.

5.3.4 Results Table

Every recognised log line will have a row in the results table, and each row

is associated with a single connection; a single connection will have at least

one result associated with it, but will usually have several, and may have

hundreds.

connection id The id of the row in the connections table this result

is associated with.

rule id The id of the rule in the rules table that recognised

the log line.

id A unique identifier for this result. This will be

assigned by the database.

warning Administrators can configure Postfix to log a warn-

ing instead of enforcing a restriction that would

reject a mail delivery attempt — a mechanism that

is quite useful for testing new restrictions. This

field will be false for a real rejection, or true if the

log line was a warning. This field should be ignored

if the result is not a rejection, i.e. the action field

of the associated rule is not DELIVERY REJECTED.

smtp code The SMTP code associated with the log line. In

general an SMTP code is only present in a log

line representing a mail being delivered or a mail

delivery attempt being rejected; results whose log
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line did not contain an SMTP code will duplicate

the SMTP code of other results in that connec-

tion. Some mail delivery log lines do not contain an

SMTP code, e.g. when Postfix delivers to a user’s

mailbox; in those cases the SMTP code is speci-

fied by the rule’s result data field, based on the

success or failure represented by the log line.

enhanced status code The enhanced status code [26] is similar to the

SMTP code, but is intended to be interpreted by

mail clients so that error messages can be clearly

conveyed to the user. Enhanced status code support

was added to Postfix in version 2.3; log lines from

previous versions will not contain any enhanced

status codes.

sender The sender’s email address. This may change dur-

ing a connection if the client uses different sender

addresses for multiple rejected delivery attempts;

however, the results for one accepted mail will only

have one sender address.

recipient The recipient address; there may be multiple recip-

ient addresses per mail or connection.

size The size of the mail, only available for delivered

mails.

delay How long the mail was delayed while it was being

delivered. This will only be present for delivered

mails.

delays More detailed information about how long the mail

was delayed while it was being delivered, again only

present for delivered mails.
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message id The message-id of the accepted mail, again it is

present for delivered mails only.

data A field available to store a piece of captured data

that does not have its own specific field, e.g. the

rejection message from a DNS Blacklist (DNSBL).

timestamp The log line’s timestamp.

5.4 Framework

The role of the framework in this architecture was described in detail in §4.2

[p. 56]; this section is concerned with the implementation of the framework

within PLP. The framework manages the parsing process, taking care of the

drudgery and boring tasks, provides services to the actions, and implements

some optimisations.

The framework performs some initialisation tasks each time the parser is

run, setting up several state tables that will later be used by actions. Data

about the connections and mails being processed is held in connections

and queueids respectively. The other state tables are used when solving

complications that arise during parsing: timeout queueids is used when

dealing with connections that time out during the DATA phase (§5.7.7

[p. 116]); bounce queueids is part of the solution to bounce notification

mails being delivered before their creation is logged (§5.7.14 [p. 124]); and

postsuper deleted queueids caches information about mails that were re-

cently deleted by the administrator, so that subsequent log lines processed by

the SAVE DATA action can be discarded (§5.7.13 [p. 123]).

The framework verifies each of the rules when it loads the ruleset, checking:

� That the specified action is registered with the framework.

� That the regex is valid. The regex will have regex components expanded

(see §5.6.3 [p. 104]), and will also be compiled for efficiency (§6.1.5

[p. 145]).
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� For overlap between the data captured by the regex and additional data

specified in either connection data or result data.

� That connection data, result data, and the regex captures specify

valid fields to save data to.

State tables from a previous PLP run, if any, will be loaded now; the

framework supports saving state at any time, without adversely affecting the

parsing process. The need to track re-injected mail (§5.7.3 [p. 110]) complicates

the process of saving state, because the relationships between mails must be

maintained; loading state is also complicated by dealing with aborted delivery

attempts (§5.7.5 [p. 113]), because a separate set of relationships between

connections and mails must be re-created when the state tables are restored.

The last step in loading the ruleset is to sort the rules as described in §6.1.2

[p. 137].

The framework is now ready to begin parsing. For each log line it will use

those rules whose program field equals the program in the log line (described

in §5.6.4 [p. 106]), falling back to generic rules if necessary, and finally

warning if the log line is unrecognised. The repetitive nature of log files

gives them high compression ratios; the framework uses a Perl module named

IO::Uncompress::AnyUncompress to read compressed log files, saving users

the trouble of uncompressing them to a temporary file before parsing begins.

When used interactively, the framework displays a progress bar to show how

far parsing has progressed through the log file and how long the remainder of

the parsing process is likely to take. The progress bar is not as accurate when

parsing compressed log files, because each compressed block uncompresses

to a variable number of log lines; variation between the recognition and

processing time of individual log lines also affects its accuracy, but overall

the progress bar is a useful addition. PLP is primarily intended for parsing

complete log files, but with minor modifications it could be used to parse

a live log file, periodically checking it for new log lines; this could be very

useful for programs that work best with up to date data, e.g. a program for

monitoring the health of the mail system, or graphs showing activity over the

last five minutes.
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The framework collects data used when evaluating PLP’s efficiency for

the evaluation chapter (§6 [p. 129]); some of the techniques used to improve

parsing speed can be turned off or altered to measure the effect they have.

The data gathered with each optimisation disabled will be compared to the

data gathered with it enabled, to quantify the benefit each optimisation

provides. Three sets of data are collected:

1. How long it takes to parse each log file (graph 6.2 [p. 134]).

2. The number of rules used when recognising log lines (graph 6.6 [p. 136]);

the framework may need to try multiple rules for each log line before it

finds one that recognises it.

3. The number of log lines and rules used per log line for each Postfix

component (graph 6.7 [p. 136]).

The framework has five ways that it can adapt its behaviour to demonstrate

how effective each optimisation is:

1. The rule ordering used can be changed from optimal (the default, most

efficient) to shuffled (intended to represent an unordered ruleset) or

reverse (reverse of optimal, least efficient). The results of parsing with

the three different orderings are shown in §6.1.2 [p. 137].

2. The framework can record which rule recognised each log line, and then

on a subsequent run consult that information so that it uses the correct

rule for each log line. This gives the best possible running time, because

only one rule is used to recognise each log line, as discussed in §6.1.3

[p. 140].

3. Each regex is compiled and the result cached when the ruleset is loaded;

this optimisation can be disabled and the regex compiled every time it

is used when recognising log lines. The effect this optimisation has is

addressed shown in §6.1.5 [p. 145].
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4. Normally, when a log line has been recognised the framework invokes

the action specified by the rule. Invoking the action can be skipped if

desired, so the timing information shows how long is spent recognising

log lines only; this time can be subtracted from the time taken by a

normal run to show how long is spent processing log lines. This data is

analysed in §6.1.6 [p. 147].

5. The framework can skip inserting data into the database, because that

dominates the execution time of the parser; the evaluation chapter

measures the speed of PLP, not the speed of the database or the disks it

resides on. The effect on parsing time of storing results in the database

is described at the beginning of §6.1 [p. 130].

The framework also provides several debugging options, to aid in writing

or correcting rules, or figuring out why PLP is not behaving as expected. In

increasing order of severity they are:

1. Individual rules can set their debug field to true, and debugging infor-

mation will be printed each time they recognise a log line.

2. Each result can be extended with extra debugging information, which

is useful when a warning dumps a data structure for inspection. The

extra information added is: the log line’s timestamp in human readable

form; the entire log line; the name of the log file and the line number

of the log line within it. This extra information is not stored in the

database.

3. Every time a log line is recognised, the recognising rule’s regex and the

log line can be printed, so that the user can verify that the correct rule

recognised each log line. This is equivalent to setting every rule’s debug

field to true.

4. Every connection and result added to the database can be dumped in a

human readable form. This will result in a huge amount of debugging

information, so it is only useful for small log file snippets, because

otherwise the amount of information is overwhelming.
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A user, typically a mail administrator, would use these options when

having difficulty extending the ruleset to recognise log lines not recognised by

PLP’s 184 rules. Option 1 is useful for debugging a single rule, to check if it is

recognising log lines it should not; figuring out that a rule is not recognising

log lines that it should recognise is a more difficult task. Option 2 is useful

when PLP is warning about parsing problems, because extra information

about a mail will be present in the warning message. Option 3 is less useful

because of the volume of data it produces, though for small log file snippets,

e.g. 1000 log lines, it is possible to manually verify that the correct rule

recognised each log line. Option 4 is not useful for most users: it is for

debugging problems within PLP, and sufficient safeguards are in place that

there should be plenty of warning messages explaining what is wrong without

using this option.

5.5 Actions

Actions are the component of this architecture responsible for processing all

of the inputs recognised by rules; in PLP they reconstruct the journey each

mail takes through Postfix, dealing with all the complications and difficulties

that arise. PLP has 23 actions and 184 rules, with an uneven distribution of

rules to actions as shown in graph 5.3 [p. 91]. Unsurprisingly, the action with

the most associated rules is DELIVERY REJECTED, the action that processes

Postfix rejecting a mail delivery attempt; next is SAVE DATA, the action that

saves useful information without doing any other processing. The third most

common action is, perhaps surprisingly, UNINTERESTING: this action does

nothing when invoked, allowing uninteresting log lines to be parsed without

any effects; it does not imply that the input is ungrammatical or unparsed.

Generally, rules specifying the UNINTERESTING action recognise log lines that

are not associated with a specific mail, e.g. notices about configuration files

changing; these log lines are recognised and processed so that the framework

can warn about unrecognised log lines, informing the user that they need to

augment the ruleset. Most of the remaining actions have only one or two

associated rules, because that input category will only ever have one or two
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log line variants, e.g. all log lines showing that a remote client has connected

are recognised by a single rule and processed by the CONNECT action.

No correlation exists between how often an action is specified by rules and

how often an action is invoked because a rule recognises a log line. Graph 5.4

on the next page shows the number of times each action was invoked when

parsing the 93 log files used to generate the statistics in §6.1 [p. 130], excluding

log files 22 & 62–68, because their contents are extremely skewed by two mail

loops, described in §6.1.1 [p. 132]. The action most commonly specified by

rules, DELIVERY REJECTED, is the third most commonly invoked action; the

most commonly invoked actions, CONNECT and DISCONNECT, are each specified

by only one rule. The SAVE DATA and UNINTERESTING actions, the second

and third most commonly specified actions respectively, are halfway down

the graph.

As should be expected, some actions have been invoked almost exactly the

same number of times: almost every CONNECT will have a DISCONNECT, with

only a 0.00042% difference between the number of times the two were invoked;

every mail that enters Postfix’s queue will be managed by postfix/qmgr

(MAIL QUEUED) and processed by postfix/cleanup (CLEANUP PROCESSING),

and again the two have only a 0.01648% difference between their number

of invocations. CLEANUP PROCESSING is invoked slightly more often than

MAIL QUEUED: occasionally, an accepted mail in the process of being transferred

is interrupted by a timeout, and there is a log line from postfix/cleanup

but not from postfix/qmgr, as described in §5.7.8 [p. 118].



CHAPTER 5. POSTFIX LOG PARSER 91

Figure 5.3: Number of rules specifying each action
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Figure 5.4: Number of times each action was invoked when parsing 93 log files,
excluding log files 22 & 62–68 because their contents are extremely skewed
by mail loops

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

m
ai

l_
di

sc
ar

de
d

sm
tp

d_
di

ed

sm
tp

d_
w

at
ch

do
g

po
st

fix
_r

el
oa

d

m
ai

l_
to

o_
la

rg
e

ex
pi

ry

de
le

te

bo
un

ce
_c

re
at

ed

m
ai

l_
bo

un
ce

d

pi
ck

up

tra
ck

sa
ve

_d
at

a

tim
eo

ut

un
in

te
re

st
in

g

cl
on

e

co
m

m
it

m
ai

l_
qu

eu
ed

cl
ea

nu
p_

pr
oc

es
si

ng

m
ai

l_
se

nt

de
liv

er
y_

er
ro

r

de
liv

er
y_

re
je

ct
ed

di
sc

on
ne

ct

co
nn

ec
tN

um
be

r o
f t

im
es

 e
ac

h 
ac

tio
n 

w
as

 in
vo

ke
d

w
he

n 
pa

rs
in

g 
93

 lo
g 

fil
es

,e
xc

lu
di

ng
 lo

g 
fil

es
22

 &
 6

2-
68

 b
ec

au
se

 th
ei

r c
on

te
nt

s 
ar

e 
ex

tre
m

el
y 

sk
ew

ed
 b

y 
m

ai
l l

oo
ps

Action

Number of times each action was invoked



CHAPTER 5. POSTFIX LOG PARSER 92

5.5.1 Description of Each Action

This section documents the actions found in PLP; it may help to revisit the

flow chart in §5.2 [p. 73] to see how a mail passes from one action to another

as its log lines are recognised. The words mail and connection are used in the

action descriptions below because they are less unwieldy and more specific

than state table entry ; a connection becomes a mail during the CLONE action,

which processes Postfix accepting a delivery attempt, and the data structure

is copied from the connections state table to the queueids state table.

The complications and difficulties that arose when parsing real-world log

files are documented in §5.7 [p. 107]; some action descriptions refer to specific

difficulties they address. The complications are documented in a separate

section to avoid overwhelming the action descriptions.

If the log line has enough information to identify the correct connection or

mail, each action will save all the data captured by the recognising rule’s regex

to the connection or mail; usually, log lines that lack identifying information

will be processed by the UNINTERESTING action. Each action is passed the

same arguments:

rule The recognising rule.

data The data captured from the log line by the rule’s regex.

line The log line, separated into fields:

timestamp The time the log line was written to the log file.

program The name of the program that generated the log line.

pid The Process Identifier (pid) of the process that generated

the log line.

host The hostname of the server the log line was generated on.

text The remainder of the log line, i.e. the message logged by

the program and recognised by the rule.
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PLP’s actions:

BOUNCE CREATED Postfix 2.3 and subsequent versions log the creation

of bounce messages, and this action processes those log lines. This action

creates a new mail if necessary; if the mail already exists the unknown

origin flag will be removed from it. To deal with complication §5.7.14

[p. 124], this action checks a cache of recent bounce mails, to avoid

incorrectly creating bounce mails when log lines are out of order, and

also marks the mail as a bounce notification.

CLEANUP PROCESSING postfix/cleanup processes every mail that

passes through Postfix; details of what it does are available in §D [p. 174].

This action saves all data captured by the rule’s regex if the log line

has not come after a timeout (see §5.7.8 [p. 118]); it also creates the

mail if necessary, setting its unknown origin flag (see §5.7.9 [p. 119]).

CLONE Multiple mails may be accepted on a single connection, so each

time a mail is accepted the connection’s state table entry must be cloned

and saved in the state tables under its queueid; if the original data

structure was used then second and subsequent mails would overwrite

one another’s data.

COMMIT Enter the data from the mail into the database. Entry will be

postponed if the mail is a child waiting to be tracked (§5.7.3 [p. 110]).

Once entered into the database, the mail will be usually be deleted from

the state tables, but deletion will be postponed if the mail is the parent

of mail re-injected for forwarding (§5.7.3 [p. 110]).

CONNECT Process a remote client connecting: create a new connection,

indexed by postfix/smtpd pid. If a connection already exists it is

treated as a symptom of a bug in PLP, and the action will issue a

warning containing the full contents of the existing connection plus the

log line that has just been parsed.

DELETE Deals with mail deleted using Postfix’s administrative command

postfix/postsuper. This action adds a dummy recipient address if
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required (see §5.7.13 [p. 123]), then invokes the COMMIT action to save

the mail to the database.

DELIVERY ERROR Process log lines indicating that an error occurred

and the remote client disconnected; the log lines processed by this action

will be followed by log lines processed by the DISCONNECT action, so all

this action does is save data from the log line.

DELIVERY REJECTED Postfix rejected a mail delivery attempt from

the remote client. This is the action most frequently specified by

rules, because so many different restrictions are used to reject delivery

attempts. This action is quite simple: if the log line contains a queueid,

save the data captured by the rule’s regex to the mail identified by that

queueid; otherwise save it to the connection identified by the pid in the

log line.

DISCONNECT Invoked when the remote client disconnects, it enters the

connection in the database if it has any useful data, performs any

required cleanup, and deletes the connection from the state tables. This

action deals with aborted delivery attempts (§5.7.5 [p. 113]).

EXPIRY If Postfix has not managed to deliver a mail after trying for five

days, it will give up and return the mail to the sender. When this

happens the mail will not have a combination of Postfix programs that

passes the valid combinations check, implemented to deal with the

complication described in §5.7.11 [p. 120]; this action tags the mail as

having expired, so the COMMIT action will skip the valid combinations

check.

MAIL BOUNCED This action behaves in exactly the same way as the

SAVE DATA action; it saves all data captured by the recognising rule’s

regex, and does nothing more. It is a separate action to distinguish

delivery attempts that bounce from other delivery attempts.

MAIL DISCARDED Sometimes mail is discarded by Postfix, e.g. mail

submitted locally on the server using postfix/pickup that is larger
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than the limit configured by the administrator. This action is used for

those mails; it invokes the COMMIT action, but is a separate action to

simplify further analysis.

MAIL QUEUED This action represents Postfix picking a mail from the

queue to deliver. This action needs to deal with out of order log lines

when mail is re-injected for forwarding; see §5.7.3 [p. 110] for details.

MAIL SENT This action behaves in exactly the same way as the SAVE DATA

action; it saves all data captured by the recognising rule’s regex, and

does nothing more. It is a separate action to distinguish successful

delivery attempts from other delivery attempts.

MAIL TOO LARGE When a remote client tries to send a mail over SMTP

that is larger than the server accepts, the mail will be discarded by

Postfix and the client informed of the problem. The mail may have

been accepted and partially transferred; if so the parser will have a data

structure that must be disposed of. See §5.7.7 [p. 116] for full details;

although that describes timeouts, the processing is the same for mails

that are too large.

PICKUP The PICKUP action corresponds to the postfix/pickup service

processing a locally submitted mail. A new mail will usually be created,

although out of order log lines may have caused it to already exist, as

documented in §5.7.9 [p. 119].

POSTFIX RELOAD When Postfix stops running or reloads its configura-

tion, it kills all postfix/smtpd processes, requiring all of the connections

in PLP’s state tables to be cleaned up, entered in the database, and

deleted from the state tables. Postfix probably kills all the other com-

ponents too, but PLP is only affected by postfix/smtpd processes

exiting.

SAVE DATA Every action that can locate the correct data structure in the

state tables saves any data captured by the recognising rule’s regex to

it. The SAVE DATA saves data in this way but does not do anything else;
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it is invoked for log lines that contain useful data but do not require

any further processing.

SMTPD DIED Sometimes a postfix/smtpd dies, is killed by a signal, or

exits unsuccessfully; the associated connection must be cleaned up,

entered in the database if it has enough data, and deleted from the

state tables. Sometimes the connection will not have enough data to

satisfy the database schema, so it cannot be entered into the database

for future analysis; unfortunately this means that the small amount of

data that has been gathered by PLP will be lost.

SMTPD WATCHDOG postfix/smtpd processes have a watchdog timer

to deal with unusual situations; after five hours the timer will expire and

the postfix/smtpd will exit. This occurs very infrequently, because

many other timeouts should occur in the intervening hours, e.g. timeouts

for DNS requests or timeouts reading data from the client. The active

connection for that postfix/smtpd must be cleaned up, entered in the

database, and deleted from the state tables.

TIMEOUT The connection with the remote client timed out, so the mail

being transferred must be discarded by Postfix. The mail may have

been accepted: if so the parser will have a data structure to dispose of.

See §5.7.7 [p. 116] for full details.

TRACK Track a mail when it is re-injected for forwarding to another mail

server; this happens when a local address is aliased to a remote address

(see §5.7.3 [p. 110] for a full explanation). TRACK will be called when

dealing with the parent mail, and will create the child mail if necessary.

TRACK checks if the child has already been tracked, either with this

parent or with another parent, and issues appropriate warnings if so.

UNINTERESTING This action just returns successfully: it is used when

a log line needs to be recognised to avoid warning about unrecognised

log lines, but does not either provide any useful data to be saved or

require any processing.
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5.5.2 Adding New Actions

Adding new actions is not as simple as adding new rules, though care has been

taken in the architecture and implementation to make adding new actions

as painless as possible; one of the few limitations is that PLP is written in

Perl, so new actions must also be written in Perl. The implementer writes

a subroutine that accepts the standard arguments given to actions, and

registers it with the framework by calling the framework’s add actions()

subroutine. No other work is required from the implementer to integrate

the action into the parser; all of their attention and effort can be focused on

correctly implementing their new action. The action may need to extend the

list of valid combinations described in §5.7.11 [p. 120] if the new action creates

a different set of acceptable programs, but this would only be necessary if

the new action processes log lines from Postfix components that PLP does

not have rules for, e.g. postfix/virtual or postfix/lmtp. The new action

must be registered before the rules are loaded, because it is an error for a

rule to specify an unregistered action; this helps catch mistakes made when

adding new rules.

5.6 Rules

The rules are responsible for recognising each log line and specifying the

correct action to be invoked. The rules will be the most visible component in

any parser based on this architecture, and also the component most likely to

be modified by users. Rules need to be as simple as possible so that users

can easily modify them or add new rules, but each parser must balance that

simplicity with the need to provide enough flexibility and power to successfully

parse inputs.

The role of the rules in the architecture is covered in detail in §4.4

[p. 61]; this section is concerned with the practical aspects of how rules are

implemented and used in PLP. The structure of the rules table has already

been documented in §5.3.2 [p. 79]; that description will not be repeated here,

but should be fleshed out by the sample rule in §5.6.1 on the following page.
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The process of creating new rules from unparsed log lines is dealt with in

§5.6.2 [p. 100], followed by the algorithm used by the utility supplied with

PLP that creates regexes from unparsed log lines; the regex components

provided by PLP to ease writing of complex regexes are covered in §5.6.3

[p. 104]. The rule conditions used in PLP are the penultimate topic (§5.6.4

[p. 106]), and this section concludes with some suggestions for how to detect

overlapping rules.

5.6.1 Sample Rule

The sample rule in table 5.1 on the following page recognises the log line that

results from Postfix rejecting a delivery attempt because the domain part of

the sender address does not have an A, AAAA, or MX DNS entry, i.e. mail

could not be delivered to any address in the sender’s domain (for full details

see [17]). An example log line that would be recognised by this rule:

NOQUEUE: reject: RCPT from smtp.example.com[192.0.2.1]:

550 5.1.8 <alice@example.com>:

Sender address rejected: Domain not found;

from=<alice@example.com> to=<bob@example.net>

proto=SMTP helo=<smtp.example.com>

The attributes in table 5.1 on the next page are used as follows:

name, description, and restriction name: are not used by the parser,

they serve to document the rule for the user’s benefit.

program and regex: program is used to restrict the log lines this rule

will be used to recognise; see §5.6.4 [p. 106] for details. The regex

does the actual recognition of log lines, and data captured by the

regex (e.g. sender, recipient) will be automatically saved to the results

and connections tables. The regex components used in the regex are

described in §5.6.3 [p. 104].
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Table 5.1: Sample rule used by PLP

Attribute Value

name Unknown sender domain
description We do not accept mail from unknown domains
restriction name reject unknown sender domain
program postfix/smtpd

regex ^__RESTRICTION_START__ <(__SENDER__)>:

Sender address rejected: Domain not found;

from=<\k<sender>> to=<(__RECIPIENT__)>

proto=E?SMTP helo=<(__HELO__)>$

result data
connection data
action DELIVERY REJECTED

hits 0
hits total 0
priority 0
debug 0

action: The action to be invoked when the rule recognises a log line. See

§5.5.1 [p. 92] for details of the actions implemented by PLP, and §4.3

[p. 59] for the role of actions in the architecture.

result data and connection data: are used to provide data not present

in the log line, but are unused in this rule.

hits, hits total, and priority: hits and priority are used when ordering

the rules for more efficient parsing (see §6.1.2 [p. 137]). At the end of

each parsing run hits is set to the number of log lines recognised by

the rule. Hits total is the sum of hits over every parsing run, but is

otherwise unused by the parser.

debug enables or disables printing of debugging information when this rule

recognises a log line.
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5.6.2 Creating New Rules

The log files produced by Postfix differ from installation to installation,

because administrators have the freedom to choose the subset of available

restrictions that suits their needs, including using different DNSBL services,

policy servers, or custom rejection messages. To ease the process of parsing

new log lines, the architecture separates rules from actions: adding new

actions requires some effort, but adding new rules to recognise new log lines

is trivial, and occurs much more frequently.

To add a new rule a new row must be added to the rules table in the

database, containing all the required attributes: action, name, description,

program, and regex; all the other attributes are either optional, are set by the

parser, or have sensible defaults. The name and description fields should be

set based on the meaning of the log line, to help others understand which log

lines this rule will recognise; the value for the program field will be obvious

from the unrecognised log lines. The action depends on the what the log

line represents, e.g. a delivery rejection, a mail being delivered, some useful

information, or something else; examine the list of actions in §5.5.1 [p. 92] to

determine the correct one. The regex needs to be based on the log line, but

see below for a tool to ease the process of creating regexes from unrecognised

log lines.

Other attributes may be required: connection data, result data, priority,

or restriction name. In general it will only become clear that connection data

or result data are required when PLP warns about an entry in the connections

or results tables that is missing some required fields, because values for those

fields are not present in any of the log lines for that connection or mail. For

example, the rule that recognises the postfix/pickup component processing

a mail sets client hostname to localhost and client ip to 127.0.0.1, because

the mail originates on the local server. If the new rule deliberately uses the

architecture’s overlapping rules feature the priority field needs to be set, on this

rule and possibly others; the priority field may be needed on unintentionally

overlapping rules too, but that is more difficult to determine. Finally, the

restriction name field should be set if the rule’s action is DELIVERY REJECTED;
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the name of the restriction should be clear from the content of the log line.

A program is provided with PLP to ease the process of creating new

rules from unrecognised log lines, based on the algorithm developed by Risto

Vaarandi for his Simple Logfile Clustering Tool (SLCT) [1]. The differences

between the two algorithms will be outlined as part of the explanation below.

The core of the SLCT algorithm is quite simple: programs generally create

log lines by substituting variable words into a fixed pattern, and analysis of

the frequency with which each word occurs can be used to determine whether

the word is variable or part of the fixed pattern. This classification can be

used to group similar log lines and generate a regex to match each group of

log lines. The algorithm has five steps:

Pre-process the input. The modified algorithm begins by leveraging the

knowledge gained from writing rules and developing PLP; it performs

many substitutions on the input log lines, replacing commonly occurring

variable terms (e.g. email addresses, IP addresses, the standard start

of rejection messages) with keywords described in §5.6.3 [p. 104]. The

purpose of this step is to utilise existing knowledge to create more

accurate regexes; it replaces many variable words with fixed words,

improving the subsequent classification of words as fixed or variable.

Regex metacharacters in the log line will be escaped, to avoid generating

invalid or incorrect regexes. The altered log lines are written to a

temporary file, which the next stage will use instead of the original

input file.

In the original algorithm the purpose of the pre-processing stage was

to reduce the memory consumption of the program. In the first pass it

generates a hash [14] (from a small range of values) for each word of

each log line, incrementing a counter for each hash. The counters will

be used in the next pass to filter out words.

Calculate word frequencies. The position of words within a log line is

important: a word occurring in two log lines does not indicate similarity

unless it occupies the same position in both log lines. If a variable term

substituted into a log line contains spaces, it will appear to the algorithm
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as more than one word. This will alter the position of subsequent

words, so a word occurring in different positions in two log lines may

indicate similarity, but the algorithm does not attempt to deal with this

possibility. The modified algorithm maintains a counter for each (word,

word’s position within the log line) tuple, incrementing it each

time that word occurs in that position.

The original algorithm hashes each word and checks that result’s counter

from the previous pass: if the word’s hash does not have a high frequency,

the word itself cannot have a high frequency, so it must be variable and

does not need a counter maintained for the (word, word’s position

within the log line) tuple, reducing the number of counters required

and thus the program’s memory consumption. This reduces the number

of counters maintained in this step, reducing memory requirements at

the cost of increased CPU usage.

As time goes by, the amount of memory typically available to a program

or algorithm increases, and the need to reduce memory requirements

correspondingly decreases, so the modified algorithm omits the hashing

step and maintains counters for all tuples. Most of the infrequently

occurring words will have been substituted with keywords during the

first step, vastly reducing the number of tuples to maintain counters for;

the original algorithm does not have the detailed knowledge leveraged

by the modified algorithm, because it is a generic tool.

Classify words based on their frequency. The frequency of each (word,

word’s position within the log line) tuple is checked: if its fre-

quency is greater than the threshold supplied by the user (1% of all log

lines is generally a good starting point), it is classified as a fixed word,

otherwise it is classified as a variable term. If a variable term appears

sufficiently often it will be misclassified as a fixed term, but that should

be noticed by the user when reviewing the new regexes, and will be

obvious when the new rules do not recognise some log lines they are

expected to. Variable terms are replaced by .+ to match one or more

of any character.
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Build regexes. The words are reassembled to produce a regex matching

the log line, and a counter is maintained for each regex. Contiguous

sequences of .+ in the newly assembled regexes are collapsed to a single

.+; any resulting duplicate regexes and their counters are combined. If

a regex’s counter is lower than the threshold supplied by the user the

regex is discarded; this second threshold is independent of the threshold

used to differentiate between fixed and variable words, but once again

1% of log lines is a good starting point.

Test the new regexes. The final step replaces keywords in the new regexes

in the same way as PLP does, and compiles each regex to check they

are valid. A match will be attempted between all of the new regexes

and each of the original unparsed log lines (not the pre-processed log

lines); the user will be warned if a log line is not matched by any regex,

or if a log line is matched by more than one regex. The number of

log lines each regex matches is counted, as is the number of log lines

matched by all regexes, though a log line is counted once only, even if

matched by more than one regex.

This step is not performed by the original algorithm.

The new regexes are displayed for the user to add to the ruleset, either

as new rules or merged into the regexes of existing rules; also displayed

are the number of unrecognised log lines each regex was expected to match,

and the number it actually matched, to help the user notice problems in the

new regexes. Discarding regexes will result in some of the unrecognised

log lines not being matched; when the ruleset has been augmented with the

new regexes, the original log files should be parsed again, and any remaining

unparsed log lines used as input to this utility.

This utility is not expected to create perfect regexes, but it greatly

reduces the effort required to deal with unrecognised log lines. The regexes it

generates will be self-contained: a parser that relies on using cascaded parsing

would require a modified algorithm, perhaps by replacing the pre-processing

stage with one that applies existing cascading rules to each log line, and uses

the resulting modified log lines for the remainder of the algorithm.
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5.6.3 Regex Components

Each rule’s regex will have keywords expanded when the ruleset is loaded, for

several reasons:

� It simplifies both reading and writing of regexes and helps to make

each regex largely self-documenting. For example, the meaning of

CLIENT HOSTNAME is immediately clear, whereas its expansion

(?:unknown|(?:[-.\w]+)) needs to be deciphered each time it is en-

countered.

� It avoids needless repetition of complex regex components, and allows

the components to be corrected or improved in one location. For

example, SENDER is used in 68 rules; if a mistake is discovered in

it the mistake only needs to be corrected in one place.

� It enables automatic extraction and saving of captured data. The regex

snippets use Perl 5.10’s named capture buffers [15] to capture data, so

the mapping between captures and fields does not need to be explicitly

specified by the rule.

To improve efficiency, the keywords are expanded and every rule’s regex

is compiled before attempting to parse the log file, otherwise every regex

would be recompiled each time it was used, resulting in a large, data de-

pendent slowdown, as described in §6.1.5 [p. 145]. Most of the keywords

are named after the fields in the connections or results tables they popu-

late: CLIENT HOSTNAME , CLIENT IP , DELAY , DELAYS ,

ENHANCED STATUS CODE , HELO , MESSAGE ID ,

QUEUEID , RECIPIENT , SENDER , SERVER HOSTNAME ,

SERVER IP , SIZE , and SMTP CODE .

The other keywords need more explanation:

CHILD The queueid of a child mail; see §5.7.3 [p. 110].

COMMAND All SMTP commands.
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CONN USE How many times the connection was reused;

Postfix tries to reuse connections whenever pos-

sible to reduce the load on both the sending and

receiving servers.

DATA This snippet is special: it does not match any-

thing by itself, so it must be followed by a pat-

tern written by the rule author, but it captures

whatever is matched by that pattern. For ex-

ample, /(__DATA__connection

(?:refused|reset by peer))/ matches ei-

ther “connection refused” or “connection reset

by peer” and causes it to be saved to the data

field of that log line’s result.

PID The pid of a postfix/smtpd process that dies

or is killed; see the SMTPD DIED action in §5.5.1

[p. 92].

RESTRICTION START Matches the standard information Postfix in-

cludes at the start of most log lines resulting

from rejecting a delivery attempt.

SHORT CMD Postfix sometimes logs SMTP commands in a

short, single word form; this snippet matches

all of those, except DATA, which typically has a

more specific rule. Priorities could have been

used instead of excluding DATA.

Some similarity exists between regex components and cascaded parsing:

each regex component resembles a rule that recognises part of a log line and

consumes it, leaving the remainder to be recognised by other components or

cascaded rules. The major difference between the two is that regex components

are explicitly used by the author of the ruleset, whereas cascaded parsing

would be dynamically applied by the framework.
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5.6.4 Rule Conditions

Rule conditions as part of the architecture have already been documented

in §4.4.2 [p. 63], and they can be very complex and difficult to evaluate.

Complex conditions are not required in parsers based on this architecture:

PLP uses quite simple rule conditions. Each rule has a program attribute

that specifies the Postfix component whose log lines it recognises, and each

log line contains the name of the Postfix component that produced it; when

trying to recognise log lines, the framework will only use rules where the two

are equal. This avoids needlessly trying rules that will not recognise the log

line, or worse, might recognise it unintentionally. In addition the framework

supports generic rules, whose program attribute is “*”; these will be used if

none of the program-specific rules recognise the log line. If none of the rules

are successful the framework will warn the user, informing them that they

need to augment their ruleset, and alerting them that the results stored in

the database may be incomplete because PLP failed to recognise some log

lines.

5.6.5 Overlapping Rules

The advantages and difficulties of overlapping rules have already been ad-

dressed in §4.4.3 [p. 65] and will not be repeated here. PLP does not try

to detect overlapping rules; that responsibility is left to the author of the

rules. A mechanism is provided for ruleset authors to specify the order that

overlapping rules will be tried in: the priority field in each rule. Negative

priorities may be useful for catchall rules.

Detecting overlapping rules is difficult, but the following approaches may

be helpful:

� Sort rules by program and regex e.g. with an SQL query similar to:

SELECT program, regex

FROM rules

ORDER BY program, regex;

The rules are sorted first by program, then by regex, because rules
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cannot overlap if their programs are different. Note that this query

does not properly deal with generic rules whose program is *; those

rules will be used on all log lines that have not been recognised by

program-specific rules.

Inspect the list to see if any pair of regexes look suspiciously similar;

overlapping regexes will often lie beside one another when sorted.

� Compare the results of parsing using different rule orderings, as described

in §6.1.2 [p. 137]. Parse several log files using optimal ordering, then

dump a textual representation of the rules, connections, and results

tables. Repeat with shuffled and reversed ordering, starting with a fresh

database. If the ruleset does not have overlapping rules the tables from

each run will be identical; differences indicate overlapping rules. The

rules that overlap can be determined by examining the differences in the

tables: each result contains a reference to the rule that created it, which

will change if that rule overlaps with another. Unfortunately this method

cannot prove the absence of overlapping rules; it can detect overlapping

rules, but only if the log files have log lines that are recognised by more

than one rule.

5.7 Complications Encountered During De-

velopment of the Postfix Log Parser

It was initially expected that parsing Postfix log files would be a relatively

simple task, requiring a couple of months of work. The author had found

Postfix log files useful when investigating problems reported by users, and

an examination of several log files gave the impression that they would be

straightforward to parse, process, and understand. The large variation in log

lines was not apparent, because most log lines are recognised by a small set

of rules, as shown in figure 6.9 [p. 138]. Most of the myriad complications

and difficulties documented in this section were discovered during PLP’s

development, but the first three complications were identified during the
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planning and design phase of this project, influencing the architecture’s

design.

Each of these complications caused PLP to operate incorrectly, generate

warning messages, or leave mails in the state table. The complications

are listed in the order in which they were overcome during development of

PLP, with the first complication occurring several orders of magnitude more

frequently than the last. When deciding which problem to tackle next, the

problem causing the highest number of warning messages or mails incorrectly

remaining in the state tables was always chosen, because that approach yielded

the biggest improvement in the parser, and made the remaining problems

more apparent. Several of the complications were discovered because PLP is

very careful to check the origin of each mail; if it does not know the origin of a

mail, that mail will be tagged as fake, and a warning issued if the mail’s origin

has not been determined before trying to save it to the database. Some of the

solutions to these complications require discarding log lines because they are

out of order, and, less frequently, discarding a data structure containing data

gathered about a connection or a mail, because of the paucity of information

contained in the data structure.

The fifteen complications documented in this section can be divided into

three broad classes:

Recreating Postfix behaviour Three complications needed to be solved

for PLP to accurately recreate Postfix’s behaviour.

Lack of information in the log files Seven complications are caused by

lack of information in the log files. In general, some extra logging by

Postfix could remove these complications, and for one complication

(§5.7.4 [p. 112]), extra logging in later versions of Postfix does remove

it; three of the complications would be removed if Postfix generated a

log line whenever it discarded a mail.

The order that log lines are found in log files Five complications are

caused by out of order log lines. Postfix is not to blame for these: they

are caused by process scheduling, inter-process communication delays,

and are more likely to occur when the mail server is heavily loaded.
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5.7.1 Queueid Vs Pid

A delivery attempt lacks a queueid until the first recipient has been accepted,

so log lines must first be correlated by postfix/smtpd pid, then transition to

being correlated by their queueid. This is relatively minor, but does require:

� Two versions of several functions: by pid and by queueid.

� Two state tables to hold data structures.

� Each action needs to know whether it deals with accepted mails, and

should find the mail in the queueid state table, or deals with delivery

attempts, and thus will find the connection in the connections state

table. Some actions, e.g. DELIVERY REJECTED, need to query both tables.

Support functions fall into two groups: one group deals with state tables,

and so need to know which one to operate on; the functions in the other

group are passed a specific mail or connection to work with, and do not

need to know about state tables at all.

The CLONE action is responsible for copying an entry from the connections

state table to the queueids state table.

5.7.2 Connection Reuse

Multiple independent mails may be delivered across one connection: this

requires PLP to clone the connection’s data as soon as a mail is accepted,

so that subsequent mails will not overwrite each other’s data. This must be

done every time a mail is accepted, because it is impossible to tell in advance

which connections will accept multiple mails. Once a mail has been accepted

its log lines will not be correlated by pid any more: its queueid will be used

instead, as described in §5.7.1. If the original connection has any useful data

(e.g. rejections) it will be saved to the database when the client disconnects.

One unsolved difficulty is distinguishing between different groups of rejections,

e.g. when dealing with the following sequence:

1. The client attempts to deliver a mail, but it is rejected.
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2. The client issues the RSET command to reset the SMTP session.

3. The client attempts to deliver another mail, likewise rejected.

Ideally, the sequence above would result in two separate entries in the

connections table, but only one will be created.

5.7.3 Re-injected Mails

Mails sent to local addresses are not always delivered directly to a mailbox:

sometimes they are sent to and accepted for a local address, but need to be

delivered to one or more remote addresses because of aliasing. When this

occurs, a child mail will be injected into the Postfix queue, but without the

explicit logging that mails injected by postfix/smtpd or postfix/postdrop

have. Thus the source of the mail is not immediately discernible from the log

line in which the mail’s queueid first appears: from a strictly chronological

reading of the log lines it usually appears as if the child mail does not have

an origin. Subsequently, the parent mail will log the creation of the child

mail, e.g. parent mail 3FF7C4317 creates child mail 56F5B43FD:

3FF7C4317: to=<username@example.com>, relay=local,

delay=0, status=sent (forwarded as 56F5B43FD)

The sample log line above would be processed by the TRACK action, which

creates the child mail if it does not exist in the state tables, links it to the

parent mail, and checks that the child is not being tracked for a second time.

Unfortunately, although all log lines from an individual process appear

in chronological order, the order in which log lines from different processes

are interleaved in a log file is subject to the vagaries of process scheduling.

In addition, the first log line belonging to the child mail (the example log

line above belongs to the parent mail) is logged by either postfix/qmgr or

postfix/cleanup, so the order also depends on how soon they process the

new mail.

Because of the uncertain order that log lines can appear in, PLP can-

not complain when it encounters a log line from either postfix/qmgr or

postfix/cleanup for a mail that does not exist in the state tables; instead it
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must create the state table entry and flag the mail as coming from an unknown

origin. Subsequently invoked actions will clear that flag if the origin of the

mail becomes clear. The parser could omit checking where mails originate

from, but requiring an explicit source helps to expose bugs in the parser; such

checks helped to identify the complications described in §5.7.8 [p. 118] and

§5.7.9 [p. 119].

Process scheduling can have a still more confusing effect: the child mail

will often be created, delivered, and entirely finished with, before the parent

mail logs its creation! Thus, mails flagged as coming from an unknown origin

cannot be entered into the database when their final log line is processed, and

PLP cannot warn the user; instead they must be marked as ready for entry

and subsequently entered once their origin has been identified. Unfortunately,

it is not possible to distinguish between child mails waiting to be tracked

and other mails whose origin is unknown, except for bounce notifications,

as described in §5.7.4 on the following page. Mails whose origin is unknown

can remain in the state tables indefinitely if their origin is not determined at

some point; they will cause a queueid clash if the queueid is reused, and, most

importantly, PLP’s understanding of such mails is incorrect. This problem

has only been observed when a state table entry is missing its initial log

line, usually because it is in an earlier log file; this specific instance is not a

serious problem, because PLP cannot be expected to fully understand and

reconstruct a mail when some of that mail’s log lines are missing.

Tracking re-injected mail requires PLP to do the following in the COMMIT

action:

1. If a mail is tagged with the unknown origin flag, it is assumed to be a

child mail whose parent has not yet been identified. The mail is tagged

as ready to be entered in the database, but entry is postponed until the

parent is identified. The child mail will not have any subsequent log

lines: only its parent will refer to it.

2. If the mail is a child mail whose parent has been identified, it is entered

in the database as usual, then removed from its parent’s list of children.

If this child is the last mail on that list, and the parent has already
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been entered in the database, the parent will be removed from the state

tables.

3. If the mail is a parent, it is entered in the database as usual because

there will be no further log lines for it. There may be child mails waiting

to be entered in the database; these are entered as usual, and removed

from the state tables. If the state tables contain incomplete child mails,

the parent’s removal from the state tables will be postponed until the

last child has been entered.

5.7.4 Identifying Bounce Notifications

Postfix 2.2.x (and presumably previous versions) does not generate a log line

when it generates a bounce notification; the log file will have log lines for a

mail whose origin is unknown. Similarities exist to the problem of identifying

re-injected mails discussed in §5.7.3 [p. 110], but unlike the solution described

therein bounce notifications do not eventually have a log line that identifies

their origin. Heuristics must be used to identify bounce notifications:

1. The sender address is <>.

2. Neither postfix/smtpd nor postfix/pickup have logged any messages

associated with the mail, indicating that it was generated internally

by Postfix, rather than accepted via SMTP or submitted locally by

postfix/postdrop.

3. The message-id has a specific format:

YYYYMMDDhhmmss.queueid@server hostname

e.g. 20070321125732.D168138A1@smtp.example.com

4. The queueid embedded in the message-id must be the same as the

queueid of the mail: this is what distinguishes a new bounce notification

from a bounce notification that is being re-injected as a result of aliasing.

For the latter, the message-id will be unchanged from the original bounce

notification, and so even if it happens to be in the correct format, i.e. if
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it was generated by Postfix on this or another server, it will not equal

the queueid of the mail.

Once a mail has been identified as a bounce notification, the unknown

origin flag is cleared and the mail can be entered in the database.

A small chance exists that a mail will be incorrectly identified as a bounce

notification, because the heuristics used may be too broad. For this to occur

the following conditions would have to be met:

1. The mail must have been generated internally by Postfix.

2. The sender address must be <>.

3. The message-id must have the correct format and contain the queueid

of the mail. Although a mail sent from elsewhere could easily have the

correct message-id format, the chance that the queueid in the message-id

would correspond with the queueid of the mail is extremely small.

If a mail is misclassified as a bounce message it will almost certainly have

been generated internally by Postfix; arguably, misclassification of this kind is

a benefit rather than a drawback, because other mails generated internally by

Postfix will be handled correctly. Postfix 2.3 and subsequent versions log the

creation of a bounce message, so this complication does not arise in their log

files. The solution to this complication will help with solving the complication

in §5.7.14 [p. 124].

This check is performed during the COMMIT action.

5.7.5 Aborted Delivery Attempts

Some mail clients behave strangely during the SMTP dialogue: the client

aborts the first delivery attempt after the first recipient is accepted, then

makes a second delivery attempt for the same recipient that it continues with

until delivery is complete. Microsoft Outlook is one client that behaves in

this fashion; other clients may act in a similar way. An example dialogue

exhibiting this behaviour is presented below (lines starting with a three digit

number are sent by the server, the other lines are sent by the client):
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220 smtp.example.com ESMTP

EHLO client.example.com

250-smtp.example.com

250-PIPELINING

250-SIZE 15240000

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

MAIL FROM: <sender@example.com>

250 2.1.0 Ok

RCPT TO: <recipient@example.net>

250 2.1.5 Ok

RSET

250 2.0.0 Ok

RSET

250 2.0.0 Ok

MAIL FROM: <sender@example.com>

250 2.1.0 Ok

RCPT TO: <recipient@example.net>

250 2.1.5 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

The mail transfer is not shown.

250 2.0.0 Ok: queued as 880223FA69

QUIT

221 2.0.0 Bye

Postfix does not log a message making the client’s behaviour clear, so

heuristics are required to identify when a delivery attempt is aborted in

this way. A list of all mails accepted during a connection is saved in the

connection’s state table entry, and the accepted mails are examined when

the disconnection action is invoked. Each accepted mail is checked for the

following:
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� Was the second result processed by the CLONE action? The first two

postfix/smtpd log lines will be a connection log line and a mail accep-

tance log line.

� Is postfix/smtpd the only Postfix component that produced a log line

for this mail? Every mail that passes normally through Postfix will

have a postfix/cleanup log line, and later a postfix/qmgr log line;

lack of a postfix/cleanup log line is a sure sign the mail did not make

it too far.

� Can the mail be found in the state tables? If not it cannot be an aborted

delivery attempt.

� If third and subsequent results exist, were those log lines processed

by the SAVE DATA action? Any log lines after the first two should be

informational only.

If all the checks above are successful the mail is assumed to be an aborted

delivery attempt and is removed from the state tables. There will be no

further log lines for such mails, so without identifying and discarding them

they accumulate in the state table and will cause clashes if the queueid

is reused. Such mails cannot be entered in the database because the only

data they contain is the client hostname and IP address, but the database

schema requires many more fields — see §5.3.3 [p. 82] and §5.3.4 [p. 83].

These heuristics are quite restrictive, and appear to have little scope for false

positives; any false positives would cause a warning when the next log line for

such a mail is parsed. False negatives are less likely to be detected: there may

be queueid clashes (and warnings) if mails remain in the state tables after

they should have been removed; if the queueid is not reused, the only way to

detect false negatives is to examine the state tables after each parsing run.

This check is performed in the DISCONNECT action; it requires support in

the CLONE action where the list of accepted mails is maintained.
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5.7.6 Further Aborted Delivery Attempts

Some mail clients disconnect abruptly if a second or subsequent recipient is

rejected; they may also disconnect after other errors, but such disconnections

are handled elsewhere in the parser, e.g. §5.7.7. Postfix does not log a message

saying the mail has been discarded, as should be expected by now. The checks

to identify this happening are:

� Is the mail missing its postfix/cleanup log line? Every mail that

passes normally through Postfix will have a postfix/cleanup log line;

lack of one is a sure sign the mail did not make it too far.

� Were there three or more postfix/smtpd log lines for the mail? There

should be a connection log line and a mail acceptance log line, followed

by one or more delivery attempt rejected log lines.

If both checks are successful the mail is assumed to have been discarded

by Postfix when the client disconnected; PLP will remove it from the state

tables. There will be no further log lines for such mails, so if PLP does not

deal with them immediately they accumulate in the state table and will cause

clashes if the queueid is reused.

These checks are made during the DISCONNECT action.

5.7.7 Timeouts During DATA Phase

The DATA phase of the SMTP conversation is where the headers and body

of the mail are transferred. Sometimes a timeout occurs or the connection is

lost during the DATA phase;1 when this occurs Postfix will discard the mail

and PLP needs to discard the data associated with that mail. It seems more

appropriate to save the mail’s data to the database, but if a timeout occurs

no data will be available to save; the timeout is recorded and saved with the

connection instead. To deal properly with timeouts the TIMEOUT action does

the following:

1For the sake of brevity timeout will be used throughout this section, but everything
applies equally to lost connections.
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1. Record the timeout and data extracted from the log line in the connec-

tion’s results.

2. If no mails have been accepted over the connection, nothing needs to

be done; the TIMEOUT action ends.

3. If one or more recipients have been accepted, Postfix will have allocated

a queueid for the incoming mail, and there may be a mail in the state

tables that needs to be discarded by PLP. The timeout may have

interrupted transfer of an accepted delivery attempt, or it may have

occurred after a mail delivery attempt was rejected. If a mail needs to

be discarded, the following checks will all pass:

� The timestamp of the log line preceding the timeout log line

must be earlier than the timestamp of the last accepted delivery

attempt, i.e. there have not been any rejections since then the

delivery attempt was accepted.

� The mail must exist in the state tables.

� The mail must not have a postfix/qmgr log line.

If all checks pass the mail will be discarded from the state tables and will

not be entered in the database. If one or more checks do not pass, PLP

assumes that the timeout happened after a rejected delivery attempt.

This assumption is not necessarily correct, because Postfix could have

accepted an earlier recipient, rejected a later one, and continued to

accept delivery of the mail for the first recipient. In that case the

timeout applies to the partially accepted mail, which will be discarded

by Postfix and should be discarded by PLP; however, this has not

occurred in practice. Processing timeouts is further complicated by the

presence of out of order postfix/cleanup log lines: see §5.7.8 on the

following page for details.

This complication is dealt with by the TIMEOUT action, with help from

the CLONE action. When a client tries to delivery a mail larger than the sever
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will accept, the MAIL TOO LARGE action will perform the same processing as

the TIMEOUT action.

5.7.8 Discarding Cleanup Log Lines

The author has only observed this complication occurring after a timeout,

though there may be other circumstances that trigger it. Sometimes the

postfix/cleanup log line for a mail being accepted is logged after the timeout

log line, by which time PLP has discarded the mail because it did not have

enough data to satisfy the database schema (see §5.7.7 [p. 116]) and was not

expected to have any more log lines; parsing the postfix/cleanup log line

causes the CLEANUP PROCESSING action to create a new state table entry, to

help deal with re-injected mails (§5.7.3 [p. 110]). This is incorrect because

the log line actually belongs to the mail that has just been discarded; if the

queueid is reused there will be a queueid clash, otherwise the new mail will

just remain in the state tables.

During the TIMEOUT action, if the mail’s postfix/cleanup log line is

still pending, the TIMEOUT action updates the timeout queueids state table,

adding the queueid and the timestamp from the log line. To deal with this com-

plication, the following checks will be performed for each postfix/cleanup

log line that is processed:

� Does the timeout queueids state table have an entry for the queueid

in the log line? If an entry is found it will be removed, regardless of

whether the remaining criteria are satisfied. If the queueid does not

exist in the timeout queueids state table, the log line being processed

cannot belong to a discarded mail.

� Has the queueid been reused yet, i.e. does it have an entry in the

queueids state table? If it has an entry in the queueids state table,

the log line being processed belongs to that mail, not to a previously

discarded mail.

� The timestamp of the postfix/cleanup log line must be within ten

minutes of the mail acceptance timestamp. Timeouts happen after five
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minutes, but some data may have been transferred slowly, and empirical

evidence shows that ten minutes is not unreasonable; it appears to be a

good compromise between false positives (log lines incorrectly discarded)

and false negatives (new state table entries incorrectly created).

The postfix/cleanup log line must pass the checks above for it to be

discarded because some, but not all, connections where a timeout occurs will

have an associated postfix/cleanup log line; if the CLEANUP PROCESSING

action blindly discarded the next postfix/cleanup log line after a timeout

it would sometimes be mistaken.

This complication is handled by the CLEANUP PROCESSING and TIMEOUT

actions.

5.7.9 Pickup Logging After Cleanup

When mail is submitted locally, postfix/pickup processes the new mail and

generates a log line. Occasionally, this log line will occur later in the log file

than the postfix/cleanup log line, so the PICKUP action will find that a

state table entry already exists for that queueid. Normally when this happens

a warning is generated by the PICKUP action, but if the following conditions

are met it is assumed that the log lines were out of order:

� The only program that has logged anything so far for the mail is

postfix/cleanup.

� The difference between the timestamps of the postfix/cleanup and

postfix/pickup log lines is less than five seconds.

As always with heuristics, there may be circumstances in which these

heuristics match incorrectly, but none have been identified so far. This

complication only seems to occur during periods of particularly heavy load,

so is most likely caused by process scheduling vagaries.

This complication is dealt with by the PICKUP action.
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5.7.10 Smtpd Stops Logging

Occasionally a postfix/smtpd will stop logging without an immediately

obvious reason. After poring over log files for some time, several reasons have

been found for this rare event:

1. Postfix is stopped or its configuration is reloaded. When this happens

all postfix/smtpd processes exit, so all entries in the connections state

table must be cleaned up, entered in the database if they have enough

data, and deleted.

2. Sometimes a postfix/smtpd is killed by a signal (sent by Postfix, by

the administrator, or by the OS), so its active connection must be

cleaned up, entered in the database if it has enough data, and deleted

from the connections state table.

3. Occasionally a postfix/smtpd will exit with an error, so the active

connection must be cleaned up, entered in the database if it has enough

data, and deleted from the connections state table.

4. Every Postfix process uses a watchdog timer that kills the process if

it is not reset for a considerable period of time (five hours by default).

This safeguard prevents Postfix processes from running indefinitely and

consuming resources if a failure causes them to enter a stuck state.

The circumstances above account for all occasions where a postfix/smtpd

suddenly stops logging. In addition to removing an active connection from

the state tables, the last accepted mail may need to be discarded, as described

in §5.7.7 [p. 116]; otherwise the queueid state table is untouched.

This complication is handled by several actions: POSTFIX RELOAD (1),

SMTPD DIED (2 & 3), and SMTPD WATCHDOG (4).

5.7.11 Out of Order Log Lines

Occasionally, a log file will have out of order log lines that cannot be dealt

with by the various techniques described in §5.7.3 [p. 110], §5.7.8 [p. 118],
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or §5.7.9 [p. 119]. In the 93 log files used in §6 [p. 129] this problem occurs

only five times in 60,721,709 log lines. All five occurrences have the same

characteristics: the postfix/local log line showing delivery to a user’s

mailbox comes after the postfix/qmgr log line showing removal of the mail

from the queue because delivery is complete. This causes several problems:

the data in the state tables for the mail is not complete, so it cannot be

entered into the database; a new mail is created when the postfix/local

log line is processed and remains in the state tables; four warnings are issued

per pair of out of order log lines.

The COMMIT action examines the list of programs that have produced log

lines for each mail, checking the list against a table of known-good Postfix

component combinations. If the mail’s combination is found in the table it

can be entered in the database; if the combination is not found entry must be

postponed and the mail flagged for later entry. The MAIL DELIVERED action

checks for that flag; if the log line is has just processed has caused the mail

to reach a valid combination then entry of the mail into the database will

proceed, otherwise it must be postponed once more.

The valid combinations are explained below. In addition to the compo-

nents shown in each combination, every mail will have log lines from both

postfix/cleanup and postfix/qmgr, and any mail may also have a log line

from postfix/bounce, postfix/postsuper, or both.

postfix/local: Local delivery of a bounce notification, or local delivery of

a re-injected mail.

postfix/local, postfix/pickup: Mail submitted locally on the server, de-

livered locally on the server.

postfix/local, postfix/pickup, postfix/smtp: Mail submitted locally

on the server, for both local and remote delivery.

postfix/local, postfix/smtp, postfix/smtpd: Mail accepted from a re-

mote client, for both local and remote delivery.

postfix/local, postfix/smtpd: Mail accepted from a remote client, for

local delivery only.
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postfix/pickup, postfix/smtp: Mail submitted locally on the server, for

remote delivery only.

postfix/smtp: Remote delivery of either a re-injected mail or a bounce

notification.

postfix/smtp, postfix/smtpd: Mail accepted from a remote client, then

remotely delivered. Typically this is a mail server relaying mail for

clients on the local network to addresses outside the local network.

postfix/smtpd, postfix/postsuper: Mail accepted from a remote client,

then deleted by the administrator before any delivery attempt was

made. Note that postfix/postsuper is required, not optional, for this

combination.

This check applies to accepted mails only, not to rejected mails. This check

is performed during the COMMIT action, with support from the MAIL DELIVERED

action.

5.7.12 Yet More Aborted Delivery Attempts

The aborted delivery attempts described in §5.7.5 [p. 113] occur frequently,

but those described in this section only occur four times in the 93 log files

used in §6 [p. 129]. The symptoms are the same as in §5.7.5 [p. 113], except

that the mail has a postfix/cleanup log line; nothing can be found in the

log files to explain why this mail does not have any further log lines. The

only way to detect these mails is to periodically scan all mails in the state

tables, deleting any mails with the following characteristics:

� The timestamp of the last log line for the mail must be 12 hours or

more earlier than the timestamp of the last log line parsed from the

current log file.

� There must be exactly two postfix/smtpd and one postfix/cleanup

log lines for the mail, with no additional log lines.
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12 hours is a somewhat arbitrary time period, but it is far longer than

Postfix would delay delivery of a mail in the queue, unless it was not running

for an extended period of time. Each time the end of a log file is reached, the

state tables are scanned for mails matching the characteristics above, and

any mails found are deleted.

5.7.13 Mail Deleted Before Delivery is Attempted

Postfix logs the recipient address when delivery of a mail is attempted, so if

delivery has yet to be attempted PLP cannot determine the recipient address

or addresses. This can occur when mail is accepted faster than Postfix can

attempt delivery, and the administrator deletes some of the mail before Postfix

has had a chance to attempt delivery. The deleted mail’s recipient address

or addresses will not have been logged yet, and the deleted mails will not

have any more log lines. A dummy recipient address needs to be added by

PLP, because every mail is required by the database schema (§5.3.4 [p. 83])

to have at least one recipient. When this complication occurs the log file will

typically show many instances of it, closely grouped. Generally, this problem

arises because the administrator has deleted some mails from Postfix’s mail

queue to stop a mail loop.

This lack of information cannot easily be overcome: it is simple to configure

Postfix to log a warning for every accepted recipient, but Postfix will not yet

have allocated a queueid for the mail when the warning for the first recipient

is logged, so the warning will be associated with the connection rather than

the accepted mail. A queueid will be allocated after Postfix accepts the MAIL

FROM command if smtpd delay open until valid rcpt is set to “no”, but

that setting will cause disk IO for every delivery attempt, instead of just for

delivery attempts where recipients are accepted, and consequently a drastic

reduction in the performance of the mail server.

The DELETE action is responsible for handling this complication.
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5.7.14 Bounce Notification Mails Delivered Before

their Creation Is Logged

This is yet another complication that only occurs during periods of ex-

tremely high load, when process scheduling and even hard disk access times

cause strange behaviour. In this complication, bounce notification mails

are created, delivered, and deleted from the queue, before the log line from

postfix/bounce that explains their origin. The origin of the mail is unknown

when it is created, but when the time comes to enter it into the database

its origin is correctly identified by the heuristics used to identify Postfix

2.2 bounce notifications, described in §5.7.4 [p. 112]. To avoid incorrectly

creating a new mail when the out of order bounce notification log line is

processed, the COMMIT action maintains a cache of recently committed bounce

notification mails named bounce queueids, which the BOUNCE CREATED ac-

tion subsequently checks when processing the bounce creation log line. If

the queueid exists in the cache, and its start time is less than ten seconds

before the timestamp of the bounce log line, it is assumed that the bounce

notification mail has already been processed and the BOUNCE CREATED action

does not create one. If the queueid exists in the cache it is removed, because

it has either just been used or the problem did not occur for the new mail.

Whether the BOUNCE CREATED action creates a new mail or finds an existing

mail in the queueids state table (not the bounce queueids cache), it flags

the mail as having been seen by the BOUNCE CREATED action; if this flag is

present the COMMIT action will not add the mail to the bounce queueids

cache. This prevents a bounce notification log line being incorrectly discarded

if a queueid is reused within 10 seconds.

5.7.15 Mails Deleted from the Mail Queue During De-

livery

The administrator can delete mails using postfix/postsuper; occasionally,

mails that are in the process of being delivered will be deleted by the adminis-

trator. This results in the log lines from the delivery agent (postfix/local,
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postfix/smtp, or postfix/virtual) appearing in the log file after the mail

has been removed from the state tables and saved in the database. The DELETE

action adds deleted mails to a cache named postsuper deleted queueids, which

is checked by the MAIL DELIVERED action, and the current log line discarded

if the following conditions are met:

1. The queueid is not found in the state tables.

2. The queueid is found in the cache of deleted mails.

3. The timestamp of the log line is within 5 minutes of the final timestamp

of the mail.

Sadly, this solution involves discarding some data, but the complication

only arises eight times in quick succession in one log file, which is not in the

93 log files used for evaluating the parser; if this complication occurred more

frequently it might be desirable to find the mail in the database and add the

log line to it.

5.7.16 Summary

This section has described the complications encountered while implementing

PLP. Five of the fifteen complications are caused by log lines appearing in

an unexpected or abnormal order in log files, often because of heavy system

load: these complications typically caused warnings and a new state table

entry. Three of the fifteen complications must be dealt with to correctly

recreate Postfix’s behaviour. The remaining seven complications are caused by

deficiencies in Postfix’s logging, and some could easily be resolved by adding

additional logging to Postfix; these seven are dealt with by applying heuristics

to specific log lines or mails, sometimes in conjunction with information

cached when mails are removed from the state tables.
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5.8 Limitations and Possible Improvements

Every piece of software suffers from some limitations, and almost always has

room for improvement. Below are the limitations and possible improvements

that have been identified in PLP.

1. Each new Postfix release requires writing new rules or modifying existing

rules to cope with the new or changed log lines. Similarly, using a new

DNSBL, a new policy server, or new administrator-defined rejection

messages also requires new rules.

2. The hostname used in the HELO command is not logged if the incoming

delivery attempt is successful. Configuring Postfix to log the HELO

hostname for accepted mails is relatively simple; create a restriction

that is guaranteed to warn for every accepted mail, as follows:

(a) Create /etc/postfix/log helo.pcre containing:

//̂ WARN Logging HELO

(b) Modify smtpd data restrictions in /etc/postfix/main.cf to

contain:

check helo access pcre:/etc/postfix/log helo.pcre

Although smtpd helo restrictions seems like the natural place to

log the HELO hostname, when it is evaluated for the first recipient

there will not yet be a queueid allocated for the delivery attempt, so

the log line will be associated with the connections rather than the

mail. A queueid is guaranteed to have been allocated when the DATA

command has been reached, and thus the queueid will be logged by

any restrictions taking effect in smtpd data restrictions, and the log

line can be associated with the correct mail. Specifying a HELO-based

restriction in smtpd data restrictions does not cause any problems;

Postfix will perform the check correctly.

Logging the HELO hostname in this fashion also partially prevents

the complication described in §5.7.13 [p. 123] from occurring, but only
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when the mail has a single recipient. When a mail has a single recipient

address it will be logged, but when a mail has multiple recipients no

addresses are logged.

3. PLP will not detect that it is parsing the same log file twice, resulting

in the database containing duplicate entries.

4. PLP does not distinguish between log files produced by different servers

when parsing; all results will be saved to the same database. This may

be viewed as an advantage, because log files from different servers can

be combined in the same database, or it may be viewed as a limitation

because it is impossible to distinguish between log files from different

servers in the same database. If the results of parsing log files from

different servers must remain separate, PLP can easily be instructed to

use a different database.

5. Further complications may arise when parsing log files, and PLP will

need to be modified to deal with them.

6. PLP does not limit the size of the database, which will grow without

bounds unless the user deletes connections and results from it. This is

both a benefit and a limitation: the benefit is that data will never be

unexpectedly deleted, but the limitation is that the user must manage

the size of the database.

5.9 Summary

This chapter has presented PLP, the parser implemented for this project,

beginning with the assumptions made during its development. A simplified

flowchart shows the most common paths taken through Postfix and PLP,

accompanied by a description of the stages and transitions. A database

provides storage for rules and for data gathered from log files; any further use

of that data is dependent on a clear understanding of the database schema,

so the role of the database schema as an API is described, followed by a

diagram and a detailed description of the database schema. The framework
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is documented next, including the steps it takes during initialisation, the

parsing process, and the conveniences it offers to users. The performance

data collected by the framework is described, as are the ways in which various

optimisations can be disabled to demonstrate their effect, and the debugging

options the framework provides. The implementation of actions in PLP is

documented, including how frequently each action is specified by rules, and

brief descriptions of why some actions are more popular than others. All the

actions that are part of PLP are described in detail, followed by the process

of adding a new action to the parser. The final component of the architecture,

the rules, is also the most visible component, and its implementation is

examined in detail with: a sample rule and an explanation of how every field

in that rule is used; a description of how to add new rules and determine the

values that should be used for each field; an explanation of the algorithm

used by the utility that creates new regexes from unparsed log lines, and

how it differs from the original algorithm it is based on. How PLP uses rule

conditions and overlapping rules is discussed, accompanied by a description

of the regex snippets the framework provides to simplify the regexes used

in rules. The many complications and difficulties encountered while writing

PLP, and the solutions developed to overcome them, are documented in

depth; also documented are how solutions interact, and which action or

actions each solution is implemented in. This chapter concludes with a list

of the limitations identified in PLP. The next chapter will evaluate this

implementation, examining both PLP’s efficiency and the coverage it achieves

when parsing log files.



Chapter 6

Evaluation

This chapter evaluates Postfix Log Parser (PLP) on two criteria: efficiency,

and coverage of Postfix log files. Efficiency is important because PLP is

intended to be used in a production environment, and must be capable of

parsing log files generated by a high volume mail server in a reasonable period

of time. Full coverage of Postfix log files is important because the data

gathered by the parser must be accurate and complete for it to be useful

and reliable. Progress in achieving one goal usually comes at the expense

of the other: every extra measure implemented to improve accuracy slows

down parsing. Some of the complications described in §5.7 [p. 107] occur

fewer than ten times when parsing the 93 log files used to evaluate PLP in

this chapter, yet their solutions slow down parsing of every log file. However,

those solutions are retained in PLP, because accurate but slow parsing is

preferable to sloppy but quick parsing.

The performance evaluation begins by describing the characteristics of

the mail server that produced the 93 log files used to evaluate the parser’s

performance and coverage; the computer that the tests were run on is also

described. The characteristics of the 93 log files are described next, with an

explanation of why PLP has better performance when parsing the larger log

files in the group. The effect of using different rule orderings is explored, and

optimal rule ordering is compared to an oracle that allows the parser to use

only one rule when recognising each log line. When PLP is used by other mail

129
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administrators, they will need to extend the ruleset to parse their own log

lines, so the next section addresses the question of how parser performance is

affected by an increase in the number of rules in the ruleset. The penultimate

topic is the simple optimisation of caching the results of compiling each rule’s

Regular Expression (regex), and the huge effect it has on parser efficiency.

The performance evaluation concludes by examining where parsing time is

spent: recognition of log lines or their subsequent processing by actions?

The second criterion the parser is evaluated on is its coverage of Postfix

log files. Two kinds of coverage need to be evaluated: what proportion of

log lines are correctly recognised by the ruleset, and what proportion of mail

delivery attempts are correctly understood and reconstructed by the actions?

The former is a requirement for the latter to be achieved, and the latter is

important because the data provided by PLP must be both complete and

correct for it to be of use to others.

6.1 Parser Efficiency

Efficiency is an obvious concern when the parser routinely needs to parse large

log files. The mail server that generated the 93 log files used in this chapter is

a production mail server handling mail for a university department; the benefit

of using this mail server is that its log files exhibit the idiosyncrasies and

peculiarities that a mail server in the wild must deal with, but the downside

is that significantly altering its Postfix configuration to accommodate this

project is not an option. Graph 6.1 on the next page shows the number of

mails accepted over Simple Mail Transfer Protocol (SMTP), with mean and

standard deviation in table 6.1 on the following page; as expected, far more

mails are accepted on weekdays than at weekends. Note that mail generated

on the server (e.g. bounce notifications, mail re-injected for forwarding, mail

sent from mailing lists) does not contribute to these figures: in particular, the

vast amounts of mail resulting from the mail loops noticeable in later graphs

are not reflected in these figures.

The standard deviation for mails received on weekend days is quite high,

because approximately four times the usual number of mails were received on
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the weekend contained in log files 16 & 17. The standard deviation for all

days is high because of the unusually high number of mails received during log

files 16, 17, 35, 36, 39 & 40. Interestingly, the extra mails received during log

files 35, 36, 39 & 40 stopped during log files 37 & 38, which may indicate that

the source was a virus infected office machine that was turned off over the

weekend. Unfortunately, the source cannot be investigated properly because

all of the mails in question were relayed via the department’s secondary Mail

Transfer Agent (MTA) (a backup mail server, hosted elsewhere), so the log files

showing the original source were unavailable. Relaying spam mail through

a secondary MTA is a common practice amongst spam senders, because

historically, primary MTAs had better anti-spam defences than secondary

MTAs.

Graph 6.1: Number of mails received via SMTP per day
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Table 6.1: Number of mails received via SMTP per day

Mean Std. Dev.

All days 8537.742 3562.945
Weekend days 4365.259 3091.683
Week days 10244.667 1985.398

When generating the timing data used in this section, 93 log files were

used, each containing one day’s log lines; the three months of contiguous log

files contain 60.722 million log lines and total 9.385 GB. Each log file was

parsed 10 times, and the mean parsing time calculated for each log file. The

computer used for test runs was a Dell Optiplex 745, with components shown
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Table 6.2: Details of the computer used to generate statistics

Component Component in use

CPU One dual core 2.40GHz Intel® CoreTM2 CPU,
with 32KB L1 cache and 4MB L2 cache.

RAM 2GB 667 MHz DDR RAM.
Hard disk One Seagate Barracuda 7200 RPM 250GB SATA disk.

in table 6.2; it was dedicated to the task of gathering statistics from test runs,

and did not run any other programs while test runs were in progress. Saving

results to the database was disabled for the test runs, because that dominates

the run time of the parser, and the tests are aimed at measuring the speed

of PLP rather than the speed of the database and the disks it is stored on.

Parsing all 93 log files in one run without saving results to the database took

2 hours, 44 minutes, and 18.704 seconds, with mean throughput of 58.487 MB

(369,551.887 log lines) parsed per minute. In contrast, when saving results to

the database, parsing all 93 log files took 14 hours, 20 minutes, and 48.205

seconds, with mean throughput of 11.164 MB (70,540.738 log lines) parsed

per minute — parsing takes up only 19.088% of execution time when saving

results to the database.

6.1.1 Characteristics of the 93 Log Files

The 93 log files used in this chapter were generated on the School of Computer

Science and Statistics’ mail server from 2007/01/26 to 2007/04/28. The 93

log files have fairly consistent sizes and contents, except for two groups of log

files: 22 & 62–68. Median log file size is 53.297 MB, containing 321,357 log

lines, with a median of 10,088 mails accepted each weekday; large scale mail

servers would accept many more mails and consequently generate much larger

log files. Graph 6.2 [p. 134] shows the parsing time in seconds, log file size in

MB, and number of log lines in tens of thousands, for each of the 93 log files.

Parsing time is plotted against number of log lines in graph 6.4 [p. 134], and

against log file size in graph 6.3 [p. 134]; the points on both graphs appear to
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form straight lines, but they actually curve downwards slightly as they move

to the right.

Graph 6.5 [p. 135] plots both the ratio of log file size to parsing time, and

the ratio of number of log lines to parsing time (higher is more efficient in

both cases); table 6.3 [p. 135] shows mean and standard deviation. The ratios

are quite tightly banded, except they increase (i.e. improve) for log files 22

& 62–68, despite their larger than usual size. The log files in both groups

are much larger than usual because of mail loops caused by users who set up

mail forwarding incorrectly, resulting in a very different distribution of log

lines: normally most log lines are generated by mail delivery attempts from

other hosts, but during the mail loops most of the log lines resulted from

failed delivery of bounce notifications re-injected for forwarding. The Postfix

components that generated most of the log lines during the mail loops have

fewer associated rules than the Postfix components whose log lines normally

make up the bulk of each log file, so the mean number of rules used per

log line is lower for these log files, as is the mean parsing time per log line.

Table 6.4 [p. 135] shows the number of rules for each Postfix component;

graph 6.6 [p. 136] shows the drop in the mean number of rules used per log

line for log files containing a mail loop, and graph 6.7 [p. 136] shows the mean

number of rules used per log line for each Postfix component for 93 log files.

The three plots on graph 6.2 on the following page are quite close together,

and the graph can be difficult to read. Log files 62–68 show a large gap

between log file size and number of log lines, whereas those plots appear to

have a small gap for all the other log files, suggesting that the ratio of number

of log lines to log file size is lower for log files 62–68 (i.e. fewer log lines per

MB). This appearance is misleading: graph 6.8 [p. 136] shows the mean log

line size for all 93 log files, and it reduces for log files 22 & 62–68, i.e. there

are more log lines per MB in those log files.
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Graph 6.2: Parsing time, log file size, and number of log lines for 93 log files
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Graph 6.3: Parsing time plotted against log file size
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Graph 6.4: Parsing time plotted against number of log lines
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Graph 6.5: Ratio of log file size and number of log lines to parsing time
(higher is more efficient)
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Table 6.3: Ratio of log file size and number of log lines to parsing time

Mean Std. Dev.

Log file size vs. parsing time (all log files) 0.836 0.059
Log file size vs. parsing time (log files 22 & 62–68) 0.995 0.030
Log file size vs. parsing time (other log files) 0.821 0.033
No. of log lines vs. parsing time (all log files) 1.470 0.039
No. of log lines vs. parsing time (log files 22 & 62–68) 1.556 0.013
No. of log lines vs. parsing time (other log files) 1.461 0.030

Table 6.4: Number of rules per Postfix component

Postfix component Number of rules

* 4
postfix/bounce 1
postfix/cleanup 10
postfix/local 20
postfix/master 6
postfix/pickup 1
postfix/postsuper 6
postfix/qmgr 12
postfix/smtp 42
postfix/smtpd 82
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Graph 6.6: Mean number of rules used per log line
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Graph 6.7: Mean number of rules used per log line for each Postfix component
over 93 log files
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Graph 6.8: Mean log line size in bytes
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6.1.2 Rule Ordering for Efficiency

PLP’s ruleset has 184 rules: the top 10 rules recognise 85.036% of the log

lines in the 93 log files, with the remaining log lines split across the other

174 of the rules, as shown in graph 6.9 on the following page. Assuming

that the distribution of log lines is reasonably consistent across log files,

PLP’s efficiency should benefit from using rules that recognise log lines more

frequently before it uses rules that recognise log lines less frequently. To

test this hypothesis, three full test runs were performed with different rule

orderings:

Optimal The optimal order, according to the hypothesis: rules that recognise

log lines most frequently will be used first.

Shuffled This ordering is intended to represent a randomly ordered ruleset.

The rules will be shuffled once before use and will retain that

ordering until the parser exits. Note that the ordering will change

every time the parser is executed, so 10 different rule orderings will

be generated for each log file in the test run.

Reverse Hypothetically the worst order: rules that recognise log lines most

frequently will be used last.

The parsing times of the three orderings are plotted against log file size in

graph 6.10 on the next page; graph 6.11 [p. 139] shows the parsing times of

optimal and reverse orderings relative to shuffled ordering, with mean and

standard deviation in table 6.5 [p. 139]. Graph 6.12 [p. 139] shows the number

of rules used by each ordering while parsing the 93 log files. This optimisation

provides a mean reduction in parsing time of 30.743% with normal log files,

making it a very worthwhile and effective optimisation.

Table 6.5 [p. 139] shows that differences in rule ordering have less effect

on parsing time when parsing log files 22 & 62–68, because of the different

distribution of log lines in those log files. A careful examination of graph 6.11

[p. 139] shows that, for the first log file only, optimal and reverse orderings

perform identically: this is because the hits field of each rule is zero for the
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first log file, so optimal and reverse orderings produce identical rule orderings.

For the first log file, shuffled ordering is the most efficient of the three, but

that is accidental and cannot be relied upon.

Graph 6.9: Log lines recognised per rule
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Graph 6.10: Parsing time plotted against log file size for optimal, shuffled,
and reverse orderings
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Graph 6.11: Parsing time of optimal and reverse orderings relative to shuffled
ordering
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Table 6.5: Parsing time of optimal and reverse orderings relative to shuffled
ordering

Mean Std. Dev.

Optimal ordering (all log files) 70.926% 5.977%
Optimal ordering (log files 22 & 62–68) 88.665% 1.133%
Optimal ordering (other log files) 69.257% 2.562%
Reverse ordering (all log files) 127.726% 8.266%
Reverse ordering (log files 22 & 62–68) 110.412% 2.289%
Reverse ordering (other log files) 129.356% 6.587%

Graph 6.12: Number of rules used by optimal, shuffled, and reverse orderings
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6.1.3 Comparing Optimal Ordering Against an Oracle

Optimal rule ordering, described in §6.1.2 [p. 137], is the best rule ordering it

is possible to achieve without having an oracle that magically divines which

rule should be used to recognise each log line. Such an oracle would give

perfect performance, because only one rule would need to be used to recognise

each log line. PLP can save a list showing which rule recognised each log

line, and use that list to simulate an oracle and improve parsing speed the

second time a log file is parsed. This does not provide a practical benefit, but

it does provide a means to evaluate the performance of optimal rule ordering

in comparison to an oracle.

Graph 6.13 on the following page shows how the oracle and optimal

ordering perform relative to shuffled ordering, with mean and standard

deviation in table 6.6 on the next page; graph 6.14 on the following page

shows parsing time plotted against log file size for the oracle, optimal ordering,

and shuffled ordering. As expected, the oracle is more efficient than optimal

ordering, but not by much, particularly when parsing the larger log files.

Graph 6.15 [p. 142] shows the percentage increase in parsing time when using

optimal ordering instead of the oracle, with mean and standard deviation in

table 6.7 [p. 142].

Once again, the difference between the oracle and optimal ordering is at

its lowest when parsing log files resulting from a mail loop (log files 22 &

62–68), because the mean number of rules used per log line is lower when

parsing these log files (see graph 6.6 [p. 136]). The performance of optimal

ordering relative to the oracle is much worse when parsing the first log file

than for the remainder of the log files, because the hits field of every rule

starts at zero, so optimal ordering does not provide any benefit for the first

log file; the oracle, in contrast, is flawless for every log file.

Optimal ordering proves to be quite efficient: table 6.7 [p. 142] shows that

optimal ordering is less than 9% slower than parsing using an oracle that

magically divines the correct rule to use for each log line.
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Graph 6.13: Parsing time of the oracle and optimal ordering relative to
shuffled ordering
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Table 6.6: Parsing time of the oracle and optimal ordering relative to shuffled
ordering

Mean Std. Dev.

The oracle (all log files) 65.671% 7.300%
The oracle (log files 22 & 62–68) 87.829% 1.528%
The oracle (other log files) 63.586% 2.745%
Optimal ordering (all log files) 70.926% 5.977%
Optimal ordering (log files 22 & 62–68) 88.665% 1.133%
Optimal ordering (other log files) 69.257% 2.562%

Graph 6.14: Parsing time plotted against log file size for the oracle, optimal
ordering, and shuffled ordering
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Graph 6.15: Percentage increase in parsing time when using optimal ordering
instead of the oracle

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

 20%

 0  10  20  30  40  50  60  70  80  90

Pe
rc

en
ta

ge
 in

cr
ea

se
 in

 p
ar

si
ng

 ti
m

e 
w

he
n

us
in

g 
op

tim
al

 o
rd

er
in

g 
in

st
ea

d 
of

 th
e 

or
ac

le

Log file

Using optimal ordering instead of the oracle

Table 6.7: Percentage increase in parsing time when using optimal ordering
instead of the oracle

Mean Std. Dev.

Percentage increase (all log files) 8.269% 2.655%
Percentage increase (log files 22 & 62–68) 0.962% 0.865%
Percentage increase (other log files) 8.956% 1.464%

6.1.4 Scalability as the Ruleset Grows

How any architecture scales as the number of rules increases is important, but

it is particularly important for this architecture because it is anticipated that

the typical parser will have a large ruleset. The full PLP ruleset has 184 rules,

whereas the minimum ruleset required to parse the 93 log files has 115 rules,

62.500% of the full ruleset. The full ruleset is larger because PLP is tested

with 774 log files (2 years, 1½ months of log files); testing with more log files

increases the chance of finding bugs in the parser or new complications to

be overcome. The 93 log files were each parsed 10 times using the minimum

ruleset, and the mean parsing times compared to those generated using the

full ruleset: the percentage parsing time increase when using the full ruleset

instead of the minimal ruleset for optimal, shuffled, and reverse orderings is

shown in graph 6.16 on the next page, with mean and standard deviation in

table 6.8 [p. 144]. For each ordering, the parsing time using the maximum
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ruleset is compared to the parsing time using the minimum ruleset: the three

orderings are not compared to a common baseline.

Clearly, the increased number of rules causes a noticeable performance

decrease with reverse ordering, and a lesser decrease with shuffled ordering,

whereas optimal ordering shows scant change. Log files 22 & 62–68 show

much smaller increases in parsing time than other log files do, because most

of the log lines in those log files are produced by Postfix components with few

rules, so removing unnecessary rules has little effect on the total number of

rules used; table 6.9 on the next page shows the number of rules per Postfix

component for each ruleset. Once again, graph 6.16 shows that optimal and

reverse orderings have identical performance for the first log file, because

the hits field of every rule starts at zero, and so the two rule orderings are

identical for the first log file.

The optimal ordering shows a mean increase of just 1.368% in parsing

time for a 60.000% increase in the number of rules. These results show that

both the architecture and PLP scale extremely well as the ruleset increases in

size, and that optimally ordering the rules makes an important contribution

to this scalability.

Graph 6.16: Percentage parsing time increase when using the maximum
ruleset instead of the minimum ruleset
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Table 6.8: Percentage parsing time increase when using the maximum ruleset
instead of the minimum ruleset

Mean Std. Dev.

Optimal ordering (all log files) 1.368% 0.474%
Optimal ordering (log files 22 & 62–68) 0.237% 0.211%
Optimal ordering (other log files) 1.475% 0.331%
Shuffled ordering (all log files) 15.666% 4.461%
Shuffled ordering (log files 22 & 62–68) 6.304% 1.047%
Shuffled ordering (other log files) 16.547% 3.555%
Reverse ordering (all log files) 24.382% 4.949%
Reverse ordering (log files 22 & 62–68) 10.869% 1.025%
Reverse ordering (other log files) 25.654% 2.811%

Table 6.9: Number of rules per Postfix component in the maximum and
minimum rulesets

Postfix component Maximum ruleset Minimum ruleset Difference

* 4 3 1
postfix/bounce 1 1 0
postfix/cleanup 10 3 7
postfix/local 20 12 8
postfix/master 6 4 2
postfix/pickup 1 1 0
postfix/postsuper 6 3 3
postfix/qmgr 12 6 6
postfix/smtp 42 31 11
postfix/smtpd 82 51 31
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6.1.5 Caching Compiled Regexes

Before the Perl interpreter attempts to match a regex against a piece of text,

the regex is compiled into an internal representation and optimised to improve

the speed of matching. This compilation and optimisation takes CPU time:

for most regexes it takes far more CPU time than the actual matching does.

If the interpreter is certain that a regex will not change while the program is

running, it will automatically cache the results of compiling and optimising

the regex for later use. The results of compiling a dynamically generated

regex can be cached and used in preference to the original regex, but it is the

responsibility of the programmer to do so; PLP does this with every rule’s

regex when the rules are loaded from the database.

A test run using optimal ordering was performed as described in §6.1

[p. 130], with one difference: regexes were not compiled and cached when

the ruleset was loaded from the database, so the Perl interpreter had to

compile each regex each time it was used when trying to recognise a log line.

Graph 6.17 on the following page shows the effect that not caching compiled

regexes has on parser performance, with mean and standard deviation in

table 6.10 on the next page. For typical log files, the mean increase in parsing

time when not caching compiled regexes is 558.945%; looking at it from the

opposite direction, caching compiled regexes reduces parsing time by 84.824%.

Caching compiled regexes is probably the single most effective optimisation

possible in PLP, and was quite simple to implement: the framework compiles

each rule’s regex when the ruleset is loaded, and uses the compiled regex

instead of the source regex when recognising log lines. As seen previously, log

files 22 & 62–68 do not suffer such a large increase in parsing time when the

optimisation is disabled; this is because, on average, fewer rules are used per

log line, so fewer regexes are compiled per log line for those log files.

The increase in parsing time when parsing the first log file is much greater

than for the other log files (see graph 6.17 on the following page); again, this

is because every rule’s hits field starts at zero, so optimal ordering is less

efficient than usual, the mean number of rules used for each log line is higher

than usual, and more regexes will need to be compiled when recognising
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each log line. Parsing time is plotted against log file size for caching and not

caching compiled regexes in graph 6.18; the plot for not caching compiled

regexes is quite uneven compared to caching compiled regexes — some log

files are particularly slow, whereas others are not as badly affected, but these

differences have not been investigated.

Graph 6.17: Percentage increase in parsing time when not caching compiled
regexes
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Table 6.10: Percentage increase in parsing time when not caching compiled
regexes

Mean Std. Dev.

Not caching compiled regexes (all log files) 520.592% 147.229%
Not caching compiled regexes (log files 22 & 62–68) 113.096% 48.396%
Not caching compiled regexes (other log files) 558.945% 79.978%

Graph 6.18: Parsing time plotted against log file size when caching and not
caching compiled regexes
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6.1.6 Where is Parsing Time Spent: Recognising or

Processing Log Lines?

The optimisations described in this chapter have addressed the process of

recognising log lines, but have not optimised actions at all. Optimisation

efforts have concentrated on recognition of log lines for two reasons:

1. Even with the optimisations described in this chapter enabled, recog-

nising log lines still accounts for two thirds of the parser’s execution

time. Graph 6.19 on the following page shows the percentage of pars-

ing time spent recognising log lines for each of the 93 log files, with

mean and standard deviation shown in table 6.11 on the next page;

for normal log files, 67.794% of parsing time is spent recognising log

lines. To measure how long recognition of log lines takes, a full test run

using optimal ordering and caching compiled regexes was performed as

previously described in §6.1 [p. 130], but with one difference: actions

were not invoked when a log line was recognised, so the parsing time

did not include the time normally taken by invocation of actions; the

mean parsing times for each log file were subtracted from the mean

parsing times from a normal test run to obtain the parsing time taken

by actions. The parsing times exclude the time taken for framework

initialisation, loading and saving state tables, loading the ruleset, and

other housekeeping tasks: in as far as possible, the times are just for

recognising log lines or recognising log lines plus invoking actions.

Optimal ordering reduces parsing time by 30.743% relative to shuffled

ordering; actions occupy 32.206% of parsing time, less if any optimi-

sations are disabled, so optimising actions could not possibly provide

as big a performance increase as optimally ordering rules. Similarly,

caching compiled regexes provides an 84.824% reduction in parsing

time; not invoking actions at all reduces the most optimised parsing

time by less than half that. Optimising actions to 1% of their original

parsing time would be only slightly more effective than optimal ordering

is, but would be vastly more difficult to implement; optimising actions
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would not reduce parsing time enough to justify the amount of effort

required.

2. The process of recognising log lines is not parser-specific (excluding

evaluation of rule conditions), so the optimisations described in this

chapter are applicable to all parsers based on this architecture. Actions

are parser-specific, so it is unlikely that any optimisations made to

actions would be portable to other parsers.

Individual actions and the framework could and have been optimised, but

plenty of existing literature is available on the topic of optimising programs,

so the subject is not dealt with here.

Graph 6.19: Percentage of parsing time spent recognising log lines
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Table 6.11: Percentage of parsing time spent recognising log lines

Mean Std. Dev.

Recognising log lines (all log files) 66.753% 3.902%
Recognising log lines (log files 22 & 62–68) 55.701% 0.634%
Recognising log lines (other log files) 67.794% 2.010%
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6.2 Coverage

The discussion of PLP’s coverage of Postfix log files is separated into two

parts: log lines correctly recognised, and mail delivery attempts correctly

understood — the former is a requirement for the latter to be achieved.

Correctly understanding and reconstructing every mail delivery attempt is

important so that the information in the database is accurate and complete.

Improving the proportion of log lines correctly recognised is the less difficult of

the two, because it just requires new rules to be written or existing rules to be

extended. Improving the proportion of correctly understood and reconstructed

mail delivery attempts is more difficult and intrusive, because it requires

adding or changing actions, and it can be much harder to realise that a

deficiency exists and needs to be addressed.

6.2.1 Log Lines Correctly Recognised

Parsing a log line is a three step process:

1. Skip the log line if the ruleset does not contain any rules for the Postfix

component that produced it.

2. Try each rule that recognises log lines from that Postfix component,

then any generic rules, until a recognising rule is found; if the log line

is not recognised, issue a warning and move on to the next log line.

3. Invoke the action specified by the recognising rule.

Each Postfix component whose log lines are of interest must have at least

one rule that recognises its log lines, or all of its log lines will be silently

skipped; in the extreme case of an empty ruleset the parser would skip every

log line. PLP skips log lines from programs that do not have any associated

rules, because there may be any number of log lines from other programs in the

log file, and some Postfix components do not produce any log lines of interest.

PLP does not parse log lines from non-Postfix programs, e.g. Amavisd-new

or SpamAssassin; it could easily be extended to do so, if a method could be

developed to correctly associate such log lines with existing state table entries.
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To correctly recognise all log lines that are not skipped, there must be a rule

to recognise each log line variant produced by each Postfix component; if a

log line is not recognised the parser will issue a warning, to inform the user

that they need to extend their ruleset. Each rule’s regex should be as specific

and precise as possible, to ensure accurate parsing: a rule with a regex that

matches zero or more of any character will recognise every log line, but not

in a meaningful way; most log lines contain fixed strings, so this is not a

problem in practice.

Full coverage of log lines can be achieved without undue effort, yet once

achieved it requires maintenance. Maintaining full coverage is an ongoing

task because the set of log line variants changes over time, e.g. administrators

add restrictions with custom messages, DNS Blacklist (DNSBL) messages

change, or major releases of Postfix change log lines (usually by adding more

information). Warnings are issued for any log lines that are not recognised;

no warnings are issued for unrecognised log lines while parsing the 93 log files,

so it can be safely concluded that zero false negatives arise. False positives

are harder to quantify, short of examining each of the 60,721,709 log lines

and checking that the correct rule recognised it. However, a random sample

of 6039 log lines was parsed, and the results manually verified by inspection

to ensure that the correct rule recognised each log line. The sample was

generated by running the command:

perl -n -e ’print if (rand 1 < 0.0001)’ LOG FILES

to randomly extract roughly one log line in every 10,000 (it actually extracted

0.00994% instead of 0.010%). Each log line was examined and the correct

rule identified from the 184 rules in the database; the correct rule was then

compared to the rule that recognised the log line when parsing. The sample

results contained zero false positives, and this check has been automated

to ensure continued accuracy. Based on these results, and how precise each

rule’s regex is, the author is confident that zero false positives occur when

parsing the 93 log files.
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6.2.2 Mail Delivery Attempts Correctly Understood

and Reconstructed

The proportion of mail delivery attempts that are correctly understood and

reconstructed is more difficult to determine accurately than the proportion

of log lines that are correctly recognised. The parser can dump its state

tables in a human readable form; examining those tables with reference to

the log files and the database is the best way to detect mails that were not

reconstructed properly; many of the complications documented in §5.7 [p. 107]

were detected in this way. PLP issues warnings when it detects any errors or

discrepancies, e.g. when a queueid is reused but the previous mail remains in

the state tables, when a queueid or Process Identifier (pid) is not found in the

state tables, or when an entry in the state tables does not include sufficient

data to satisfy the database schema. The parser should produce few or no

warnings during parsing, and when finished parsing the state tables should

only contain entries for mails that have log lines in subsequent log files. There

will often be warnings about a missing queueid or pid when parsing the first

few thousand log lines, because some earlier log lines for those connections or

mails are in a previous log file; loading state tables saved when parsing the

log file containing those log lines will solve this problem.

5 warnings are produced when parsing the 93 log files to generate the

data used in this chapter, but because PLP errs on the side of producing

more warnings rather than fewer, those 5 warnings represent 3 instances of 1

problem: 3 connections that started before the first log file, so their initial

log lines are missing, leading to warnings when their remaining log lines are

parsed. None of the warnings are false positives.

The state tables will contain entries for mails not yet delivered when the

parser finishes parsing the log file. Ideally, those are the only entries the state

tables will contain, though they may also contain mails whose initial log lines

are not contained in the log files. Any other entries in the state tables are

evidence of either a failure in parsing, or an aberration in the log files. After

parsing the 93 log files, the state tables contain 18 entries:

� 1 connection that started only seconds before the log files ended and
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the mail had not yet been fully transferred from client to server.

� 1 mail that had been accepted only seconds before the log files ended

and had not yet been delivered.

� 9 mails whose initial log lines were not present in the log files. Six of

those mails did not produce warnings because they resemble child mails

waiting to be tracked with a parent; see §5.7.3 [p. 110] for details. The

other three mails were missing more log lines, and so they produced

five warnings, as documented previously.

� 7 mails that had yet to be delivered because of repeated delivery failures.

All of the mails remaining in the state tables have valid reasons for being

present, so it can be concluded that zero false negatives occur when parsing

the 93 log files. Once again, determining the false positive rate is much harder,

because manually checking the results of parsing 13,850,793 connections and

mails accepted, rejected, bounced, or delivered is infeasible. Considerable

evidence exists that the false positive rate is extremely low, if not zero:

� PLP performs many checks to detect known problems, e.g. a queueid

missing from the state tables. No such warnings are produced during

the test runs other than the five described previously.

� Queueids and pids naturally identify log lines belonging to one mail or

connection respectively; it is extremely unlikely that a log line would

not be associated with the right connection.

� When dealing with the complications described in §5.7 [p. 107], the

solutions are as specific and restrictive as possible, with the goal of

minimising the number of false positives. In addition, the solution to

the complication described in §5.7.11 [p. 120] imposes conditions that

every reconstructed mail must comply with to be acceptable, not just

the five mails exhibiting that complication.

� Every effort has been made to make PLP as precise, demanding, and

particular as possible.
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Figure 6.20: The command used to extract the log segment used to verify
PLP’s parsing

perl -Mstrict -Mwarnings -e ’

while (<>) {

if (rand 1 < 0.0001) {

my $count = 0;

while ($count < 6000) {

print scalar <>;

$count++;

}

exit;

}

}’ LOG_FILES

Verifying by inspection that the parser correctly processes all 13,850,793

mail delivery attempts in the 93 log files is infeasible, but verifying the parsing

of a sample from those log files is a tractable albeit extremely time consuming

task. A sample of log lines was obtained by randomly selecting a block of

6000 contiguous log lines from the 93 log files (0.00988% of the total number

of log lines), using the command shown in figure 6.20. It is important that

the log lines are contiguous, so that all log lines are present for as many of the

mail delivery attempts contained in the block as possible. This log segment

was parsed with all debugging options enabled, resulting in 167,448 lines of

output.1 All 167,448 lines were examined in conjunction with the log file

segment and a dump of the resulting database, verifying that PLP recognised

each of the log lines with the correct rule and invoked the correct action,

which in turn correctly processed the log line and saved the correct data to

be inserted into the database. The log file segment produced 4 warnings, 10

mails correctly remaining in the state tables, 1625 mail delivery attempts

1A mean of 27.908 lines of output per log line; each connection has 30 debugging lines,
plus 21 debugging lines per result. Connections which have been cloned will have the cloned
connection in their debugging output, plus another 33 debugging lines. Those numbers are
approximate, and may vary ± 2. An approximate linear relationship between the number
of log lines and debugging lines is: 33(connections) + 30(accepted mails) + 21(results).
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correctly entered in the database, 0 false positives, and 0 false negatives.

Given the evidence detailed above, the author is confident that the false

positive rate when reconstructing a mail delivery attempt from the 93 log

files is exceedingly low, if not zero.

6.3 Summary

This chapter evaluated PLP on two criteria: efficiency, and coverage of Postfix

log files. The former began by describing the mail server the log files were

taken from, the computer used to generate the statistics in this chapter,

and the characteristics of the 93 log files used to generate statistics and test

coverage, including why performance is better when parsing the larger log

files. The framework optimises the order in which rules are used when trying

to recognise each log line, and the effect that optimisation has on parsing

time is explored; this is followed by comparing optimal ordering with an

oracle. How PLP scales as the size of the ruleset increases is addressed,

followed by a description and analysis of the simplest and most effective of

the optimisations, caching compiled regexes, and the efficiency evaluation

concludes with an examination of where parsing time is spent: recognising

log lines or processing them?

Coverage of Postfix log files is divided into two topics in this chapter: log

lines correctly recognised, and mail delivery attempts correctly understood

and reconstructed. The former is initially more important, because the

parser must correctly recognise every log line if it is to be complete, but

subsequently the latter takes precedence because correctly reconstructing the

journey a mail delivery attempt takes through Postfix is the purpose of the

parser. Increasing the proportion of log lines correctly recognised is relatively

simple and non-intrusive: adding new rules or modifying existing rules is

very easy because of the separation of rules, actions, and framework in both

the architecture and PLP. Improving the understanding and reconstruction

of mail delivery attempts is harder, because Postfix’s behaviour must be

analysed and figured out, and support for the newly understood behaviour

integrated into the actions without breaking the existing parsing. Detecting
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a deficiency in the parser’s understanding of mail delivery attempts requires

careful study of any warnings produced and the entries remaining in the

state tables. Rectifying a flaw in the parser requires a deep understanding

of Postfix’s log files, and a working knowledge of the framework, actions,

and rules; investigative work will be needed to determine the cause of the

deficiency, followed by further examination of the log files to aid in developing

a solution, and finally implementation, integration, and testing of the solution.

This chapter shows that it is possible to balance the conflicting goals of

efficient and accurate parsing, and that one does not have to be sacrificed to

achieve the other.



Chapter 7

Conclusion

Parsing Postfix log files appears at first sight to be an uncomplicated task,

especially if one has previous experience in parsing log files, but it turns

out to be a much more taxing project than initially expected. The variety

and breadth of log lines produced by Postfix is quite surprising, because

a quick survey of sample log files gives the impression that the number of

distinct log line variants is quite small; this mistaken impression comes from

the uneven distribution exhibited by log lines produced in normal operation,

vividly illustrated in graph 6.9 [p. 138]. Given the diverse nature of Postfix

log lines, and the ease with which administrators can cause new log lines to

be logged (§2.3 [p. 22]), enabling users to easily extend the parser to deal with

new log lines is a design imperative (§4.1 [p. 53]). Providing a tool to ease

the generation of Regular Expression (regex)es from unrecognised log lines

(§5.6.2 [p. 100]) should greatly help users who need to extend their ruleset to

recognise previously unrecognised log lines.

This architecture’s greatest strength is the ease with which parsers based

on it can be adapted to deal with new requirements and inputs. Parsing a

variation of an existing input is a trivial task: simply modify an existing rule

or add a new rule and the task is complete. Parsing a new category of input

is achieved by writing a new action and a rule for each input variant; quite

often the new action will not need to interact with existing actions, but when

interaction is required the framework provides the necessary facilities. The
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architecture imposes very little red tape when writing new actions, allowing

the implementer to focus their time and energy on correctly implementing

their new action (§4.3 [p. 59]). The separation of the architecture into

rules, actions, and framework (§4.1 [p. 53]) is unusual, partly because the

three are separated so completely. Although parsers are often divided into

separate source code files (the combination of lex & yacc [9] being a common

example), the parts are usually quite internally interdependent, and will

be combined by the compilation process; in contrast, Postfix Log Parser

(PLP) keeps the rules and actions separate until the parser runs (§5.4 [p. 85]).

This separation enables the optimisations discussed in §6.1 [p. 130], and it

also allows different approaches to ruleset management, e.g. using machine

learning techniques to seamlessly create or alter rules to recognise new inputs

(§4.4.1 [p. 62]). The decoupling of rules from actions allows different sets of

rules to be used with one set of actions, e.g. a parser might have actions to

process versions one and two of a file format; by choosing the appropriate

ruleset the parser will parse version one, or version two, or both versions.

A general purpose framework can be written, so that writing a parser just

requires writing actions and rules. The architecture makes it possible to

apply commonly used programming techniques (such as object orientation,

inheritance, composition, delegation, roles, modularisation, or closures) when

designing and implementing a parser, simplifying the process of working within

a team or developing and testing additional functionality. This architecture is

ideally suited to parsing inputs that are not fully understood or do not follow

a fixed grammar: the architecture warns about unrecognised inputs and errors

encountered by actions, but continues parsing as best it can, allowing the

developer of a new parser to decide which deficiencies are most important

and require attention first, rather than being forced to fix the first error that

arises.

The flow of control in this architecture is quite different from other

architectures, e.g. those used for compiling a programming language. Typically,

those parsers have a current state: each state has a fixed set of acceptable

next states, processing is determined by the state transition that takes place,

and unacceptable state transitions cause parsing to fail. This architecture is
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different: the rule that recognises the input dictates the action that will be

invoked. Rule conditions (§4.4.2 [p. 63]) enable stateful parsing, where the

list of rules used to recognise an input is constrained by the parser’s current

state, but the recognising rule still dictates the action that is invoked and,

whether directly or indirectly, the next state.

When writing PLP, the real difficulties arose once the parser was success-

fully recognising almost all of the log lines, because most of the irregularities

and complications documented in §5.7 [p. 107] started to become apparent

then. Adding new rules to deal with numerous infrequently occurring log

line variants was a simple if tiresome task, whereas dealing with mails that

were missing information or where Postfix’s actions were not being correctly

reconstructed was much more grueling. Trawling through log files was ex-

tremely time consuming and quite error prone, searching for something out

of the ordinary that might help diagnose the problem, and eventually finding

it — sometimes hundreds or even thousands of log lines away from the last

occurrence of the queueid for the mail in question. Sometimes the task was

not to identify the unusual log line, but to spot that a log line normally

present was missing, i.e. to realise that one log line amongst thousands was

absent. In all cases the evidence was used to construct a hypothesis to explain

the irregularities, and that hypothesis was tested in PLP; if successful, the

parser was modified to deal with the irregularities, without adversely affecting

existing parsing. The complications documented in §5.7 [p. 107] are presented

in the order they were solved in, and that order closely resembles the fre-

quency in which they occur; the most frequently occurring complications

dominated the warning messages produced, and so naturally they were the

first complications to be dealt with.

PLP is not merely a proof of concept: it is intended to be used for parsing

real-world log files from production mail servers, and the resulting data used

to improve anti-spam defences. This means that efficiency is important:

parsing must complete in an reasonable period of time, so that the results

can be used in a timely manner. PLP’s efficiency is evaluated in §6.1 [p. 130],

where optimisations and the effect they have are explored.

A parser’s ability to correctly parse its inputs is extremely important;
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PLP’s coverage of 93 log files, each containing one day’s log lines, is discussed

in §6.2 [p. 149]. Both its success at recognising individual log lines and its

correctness in reconstructing each mail’s journey through Postfix are described

in detail, including the results of manually verifying that a randomly selected

portion of a log file was correctly parsed. Experience implementing PLP

shows that full input coverage is not difficult to achieve with this architecture,

and that with enough time and effort a full understanding of the input is

possible. Postfix log files would require substantial time and effort to correctly

parse regardless of the architecture used; this architecture enables an iterative

approach to be used [22], as is practiced in many other software engineering

disciplines.

The data gathered by PLP provides the foundation for the future of this

project: using machine-learning algorithms to analyse the data and optimise

the set of anti-spam defences in use, followed by identifying patterns in the

data that could be used to write new anti-spam techniques to recognise and

reject spam rather than accepting it. The database (§5.3 [p. 76]) provides the

data in a normalised form that is far easier to use as input to new or existing

implementations of machine-learning algorithms than trying to adapt each

algorithm to extract data directly from log files. New policy servers, written

to implement new anti-spam measures, can be tested or trained by using the

collected data to simulate mail delivery attempts; this would allow simple,

fast, reproducible testing, without the risk of adversely affecting a production

mail server. Development of PLP is finished, i.e. it correctly parses Postfix

log files, and in future it will only require maintenance; however, one avenue

of future development under consideration is to extend it to parse non-Postfix

log lines, e.g. SpamAssassin or Amavisd-new log lines. PLP can easily be

extended to do this, but it requires a method of associating the non-Postfix

log lines with the existing data structures and state tables, so that all of the

data for a mail delivery attempt can be stored together.

PLP provides a basis for systems administrators to monitor the effective-

ness of their anti-spam measures and adapt their defences to combat new

techniques used by those sending spam. PLP is a fully usable application,

built to address a genuine need, rather than a proof of concept whose sole
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purpose is to illustrate a new idea; it deals with the oddities and difficulties

that occur in the real world, rather than a clean, idealised scenario developed

to showcase the best features of a new approach.
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Glossary

<> <> is the sender address used for sending bounce notifications. In the

Simple Mail Transfer Protocol (SMTP) conversation, all addresses are

enclosed in <>, so username@domain is sent as <username@domain>;

thus <> is actually an empty address, but it is always written as <>

for clarity. Mail servers must not unconditionally reject mail sent from

<>, or they are in violation of Request For Comments (RFC) 2821 [25].

Application Programming Interface One of the fundamental concepts

when writing programs is the reuse of existing code, so that each new

program does not reinvent existing wheels. An Application Program-

ming Interface (API) defines the interface provided to the user of the

existing code, and acts as a contract between the user and the provider:

if the user adheres to the API the provider guarantees it will work, but

is free to change the underlying implementation if the API is preserved.

AWK AWK is a general purpose programming language designed for pro-

cessing text that is available as a standard utility on all Unix systems.

Backscatter When a spam sender or virus sends mail with forged sender

addresses, innocent mail servers are flooded with undeliverable mail

notifications from badly configured mail servers that either do not verify

recipient addresses before accepting deliver attempts, or automatically

reply to mail identified as spam; this is called backscatter.
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Context Free Grammar A Context Free Grammar (CFG) is a grammar

in which every transition or production takes the form L→ R, where

L is a single non-terminal symbol, and R is a (possibly empty) string

of terminal or non-terminal symbols. Every CFG can be recognised by

a Push-Down Automata (PDA), and PDAs cannot recognise more com-

plicated grammars, so CFGs and PDAs are equivalent in computational

power.

DNS Blacklist A DNS Blacklist (DNSBL) is a simple collaborative anti-

spam technique used to reject or penalise mail sent from IP addresses

believed to be the source of large volumes of spam. The criteria used

when deciding if an IP address should be included vary widely between

DNSBLs, so before using one it is essential to check their listing policies.

To use a DNSBL, Postfix makes a DNS request incorporating the IP

address of the client; if the requested hostname is found the client is on

the DNSBL.

Extended SMTP Extended SMTP (ESMTP) [24] provides a flexible mech-

anism for SMTP to be extended with new functionality, allowing new

features to be tested without having to be included in the standard proto-

col. ESMTP is backwards compatible with SMTP: ESMTP clients and

servers can interact with SMTP clients and servers without difficulty.

Finite Automata Finite Automata (FA) are computing devices that accept

or recognize regular languages. They lack any form of storage, so

although they can recognise languages such as (ab)∗ or a∗(b∗|c)b, they

cannot count and so cannot recognise languages such as anbn.

hash A hashing function transforms a string of characters to a number. A

common usage is to maintain a data structure indexed by strings in an

efficient manner. A full description is beyond the scope of this thesis,

further information can be found in [14].

Joe Job A joe job describes a large amount of spam mail sent using a faked

sender address with the intention of sullying the good name of the user

of that address. Joe jobs are one cause of backscatter.
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Local Mail Transfer Protocol Local Mail Transfer Protocol (LMTP) is

a protocol derived from SMTP that removes the need for the server to

maintain a mail delivery queue, instead relying on the client to maintain

it. Typically the client is an Mail Transfer Agent (MTA), and the server

is a delivery agent or a mail store. Full details are available in [10].

Mail Transfer Agent A Mail Transfer Agent (MTA) sends and receives

mail via SMTP. Users submit mail to an MTA via their mail client (e.g.

Microsoft Outlook, Thunderbird, webmail services); the sending MTA

transfers the mail to the receiving MTA, which forwards the mail to

another recipient, or delivers the mail to a user’s mailbox or a program

such as a mailing list manager.

Process Identifier There may be multiple copies of any program executing

at any one time, so the program’s name is not suitable as a distinguishing

identifier; instead, each process is given a Process Identifier (pid) that

is guaranteed to be unique for the lifetime of the process. Once the

process has completed, the pid may be reused, because they are drawn

from a finite pool.

Push-Down Automata A Push-Down Automata (PDA) is a computa-

tional device similar to a FA, but it can additionally use a stack to

store data. A PDA can manipulate the stack during state transitions by

adding or removing a single piece of data, and when determining which

state transition to take, the piece of data on the top of the stack can

be used in addition to the input. PDA can recognise all the languages

recognised by FA, and can also recognised languages of the form anbn.

queueid Each mail in Postfix’s queue is assigned a queueid to uniquely

identify it. Queueids are assigned from a limited pool, so although

they are guaranteed to be unique for the lifetime of the mail they are

assigned to, they may be reused later.

Regular Expression Regular Expressions are a compact, powerful method

of specifying patterns that describe a set of strings. The Regular
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Expression (regex) aa*b*b describes a set of strings, all of which start

with a, followed by any number of a, then any number of b, and finish

with b; the strings ab, aaaaaaaab, and aaabbbbb are members of that

set, whereas the strings abba, abcd, and qwerty are not. A string can

be checked against a regex to determine if the string is a member of the

set of strings described by that regex.

Request For Comments The Request For Comments (RFC) series is a

series of proposals defining various protocols and formats, e.g. SMTP.

The name is somewhat misleading nowadays: initially the authors

were asking for peer review, but these documents are now the de facto

standards the Internet runs on.

Simple Mail Transfer Protocol Simple Mail Transfer Protocol (SMTP)

is the protocol used for transferring mail between the sending and

receiving MTA. It is a simple, human readable, plain text protocol,

making it quite simple to test and debug problems with it. A detailed

description of SMTP is beyond the scope of this thesis: the original

protocol definition is in RFC 821 [28], later superceded by RFC 2821 [25].

Syslog Syslog is the standard logging mechanism used on Unix systems: a

program sends log messages to syslog, then syslog filters and stores the

messages as configured by the administrator.
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Acronyms

API Application Programming Interface

ATN Augmented Transition Networks

CFG Context Free Grammar

CSV Comma-Separated Value

DNSBL DNS Blacklist

ESMTP Extended SMTP

FA Finite Automata

LMA Log Mail Analyzer

LMTP Local Mail Transfer Protocol

MTA Mail Transfer Agent

PDA Push-Down Automata

pid Process Identifier

PLP Postfix Log Parser

regex Regular Expression

RFC Request For Comments

SLCT Simple Logfile Clustering Tool

SMTP Simple Mail Transfer Protocol
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SPF Sender Policy Framework

SQL Structured Query Language
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Postfix Daemons

bounce The bounce daemon is responsible for generating bounce notifications

in Postfix version 2.3 and later.

http://www.postfix.org/bounce.8.html

Last checked 2009/02/23.

cleanup The cleanup daemon processes all incoming mail after it has been

accepted and before it is delivered. It removes duplicate recipient

addresses, inserts missing headers, and rewrites addresses if configured

to do so.

http://www.postfix.org/cleanup.8.html

Last checked 2009/02/23.

lmtp Delivers mail using the Local Mail Transfer Protocol (LMTP) protocol.

http://www.postfix.org/lmtp.8.html

Last checked 2009/02/23.

local The Postfix component responsible for local delivery of mail (i.e. mail

delivered on the server Postfix is running on); this includes alias ex-

pansion, processing of a user’s .forward file, and delivery of the mail,

whether to a user’s mailbox or a program such as a mailing list man-

ager.

http://www.postfix.org/local.8.html

Last checked 2009/02/23.
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pickup Pickup is the daemon that deals with mail submitted locally via

postfix/postdrop, passing the mail on to postfix/cleanup for fur-

ther processing.

http://www.postfix.org/pickup.8.html

Last checked 2009/02/23.

postdrop Postdrop is used when submitting mail locally on the server: it

copies its input into a newly created mail in the queue, for processing

by postfix/pickup and subsequent delivery.

http://www.postfix.org/postdrop.1.html

Last checked 2009/02/23.

postsuper Used by the administrator for maintenance tasks such as deleting

mails from the queue, putting mail on hold and later releasing it, and

consistency checking of the mail queue.

http://www.postfix.org/postsuper.1.html

Last checked 2009/02/23.

qmgr Qmgr is the Postfix daemon that manages the mail queue, determining

which mails will be delivered next. Qmgr groups mail based on the

recipient for local mails and the destination server for remote addresses,

ensuring that it achieves maximum concurrency without overwhelming

destinations or wasting resources on non-responsive destinations.

http://www.postfix.org/qmgr.8.html

Last checked 2009/02/23.

sendmail A Postfix component that is compatible with the Sendmail mail

submission program which all Unix commands that need to send mail

use; it executes postfix/postdrop to place a new mail in the queue.

http://www.postfix.org/sendmail.1.html

Last checked 2009/02/23.

smtp Delivers mail using the Simple Mail Transfer Protocol (SMTP) proto-

col.

http://www.postfix.org/smtp.8.html

Last checked 2009/02/23.
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smtpd The Postfix component that accepts mail via SMTP, and implements

most of the anti-spam restrictions Postfix provides.

http://www.postfix.org/smtpd.8.html

Last checked 2009/02/23.

virtual The Postfix component responsible for delivery of mails to virtual

domains. When postfix/local delivers mail, the destination is de-

termined only by the portion of the email address on the left side

of the @, whereas when postfix/virtual delivers mail, the destina-

tion is determined by the entire email address. For example, if the

server is responsible for both the example.org and example.net do-

mains: postfix/local would deliver mail for john@example.org and

john@example.net to the same mailbox, whereas postfix/virtual

would deliver mail for those addresses to different mailboxes. Virtual

delivery is used where the local part of an address may be present in

multiple domains, and each must be delivered to different users.

http://www.postfix.org/virtual.8.html

Last checked 2009/02/23.
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